
Nimbus: a Ruby gem to implement Random Forest
algorithms in a genomic selection context
Juanjo Bazán1 and Oscar Gonzalez-Recio2

1 Departamento de Física Teórica. Universidad Autónoma de Madrid. 2 Departamento de Mejora
Genética Animal. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria.DOI: 10.21105/joss.00351

Software
• Review
• Repository
• Archive

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Nimbus is a Ruby gem implementing Random Forest in a genomic selection context,
meaning every input file is expected to contain genotype and/or phenotype data from
a sample of individuals. Other than the ids of the individuals, Nimbus handle the data
as genotype values for single-nucleotide polymorphisms (SNPs), so the variables in the
classifier must have values of 0, 1 or 2, corresponding with SNPs classes of AA, AB and
BB.
Nimbus provides a novel dataframe of random forest under ruby, and implements a modi-
fied algorithm that can separate all genotypes for a single marker, which can accommodate
both additivity and dominance. Further, it allows the user to specify a loss function and
provide full information of the trees in a .yml file.
Nimbus can be used to:

• Create a random forest using a training sample of individuals with phenotype data.
• Use an existent random forest to get predictions for a testing sample.

Random Forest

The random forest algorithm is a classifier consisting in many random decision trees,
it was first proposed as a massively non-parametric machine-learning algorithm by Leo
Breiman (Breiman 2001). It is based on choosing random subsets of variables for each
tree and using the most frequent, or the averaged tree output as the overall classification.
Random forest makes use of bagging and randomization, constructing many decision trees
(Kamiński, Jakubczyk, and Szufel 2017) on bootstrapped samples of a given data set. The
prediction from the trees are averaged to make final predictions.
In machine learning terms, it is an ensemble classifier, so it uses multiple models to obtain
better predictive performance than could be obtained from any of the constituent models.
The forest outputs the class that is the mean or the mode (in regression problems) or the
majority class (in classification problems) of the node’s output by individual trees.
The algorithm is robust to over-fitting and able to capture complex interaction structures
in the data, which may alleviate the problems of analyzing genome-wide data.

Learning algorithm

Training: Each tree in the forest is constructed using the following algorithm:
• Let the number of training cases be N, and the number of variables (SNPs) in the

classifier be M.

Bazán et al., (2017). Nimbus: a Ruby gem to implement Random Forest algorithms in a genomic selection context. Journal of Open Source
Software, 2(16), 351, doi:10.21105/joss.00351

1

https://doi.org/10.21105/joss.00351
https://github.com/openjournals/joss-reviews/issues/351
https://github.com/xuanxu/nimbus
http://dx.doi.org/10.5281/zenodo.845342
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00351


• The mtry number of input variables is told to the algorithm to be used in determin-
ing the decision at a node of the tree; m should be much less than M (usually 1/3),
and the optimal value should be tuned for methods like grid search.

• Choose a training set for this tree by drawing n samples with replacement from all
N available training cases (i.e. bootstrap sampling). The rest of the cases (Out Of
Bag sample) will be used to estimate the error of the tree at predicting the classes
of this out of Bag samples.

• For each node of the tree, randomly choose m SNPs on which to base the decision
at that node. Calculate the best split based on these m SNPs in the training set.

• Each tree is fully grown and not pruned (as may be done in constructing a normal
tree classifier).

• When in a node there is not any SNP split that minimizes the general loss function
of the node, or the number of individuals in the node is less than the minimum node
size then label the node with the average phenotype value of the individuals in the
node.

Testing: An independent sample can be pushed down the tree to predict the most
probable phenotype given the SNP genotypes. It is assigned the label of the training
sample in the terminal node it ends up in. This procedure is iterated over all trees in the
ensemble, and the average vote of all trees is reported as the random forest prediction.

Nimbus

Nimbus trains the algorithm based on an input file (learning sample) containing the
phenotypes of the individuals and their respective list of genotype markers (i.e. SNPs). A
random forest is created and stored in a .yml file for future use.
Nimbus can also be run to make prediction in a validation set or in a set of data containing
yet to be observed response variable. In this case, the predictions can be obtained using
the random forest created with a learning sample or using a previously stored random
forest.
If a learning sample is provided, the gem will create a file with the variable importance
of each feature (marker) in the data. The higher the importance is, the more relevant the
marker is to correctly predict the response variable in new data.
Nimbus can be used for both classification or regression problems, and the user may
provide different parameter values in a configuration file to tune the performance of the
algorithm.

Bazán et al., (2017). Nimbus: a Ruby gem to implement Random Forest algorithms in a genomic selection context. Journal of Open Source
Software, 2(16), 351, doi:10.21105/joss.00351

2

https://doi.org/10.21105/joss.00351


-

References

Breiman, Leo. 2001. “Random Forest.” Machine Learning 45 (1). Springer Nature: 5–32.
doi:10.1023/a:1010933404324.
Kamiński, Bogumił, Michał Jakubczyk, and Przemysław Szufel. 2017. “A Framework for
Sensitivity Analysis of Decision Trees.” Central European Journal of Operations Research,
May. Springer Nature. doi:10.1007/s10100-017-0479-6.

Bazán et al., (2017). Nimbus: a Ruby gem to implement Random Forest algorithms in a genomic selection context. Journal of Open Source
Software, 2(16), 351, doi:10.21105/joss.00351

3

https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1007/s10100-017-0479-6
https://doi.org/10.21105/joss.00351

	Summary
	Random Forest
	Learning algorithm
	Nimbus


	References

