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Summary

Bayesian optimization has risen over the last few years as a very attractive method to
optimize expensive to evaluate, black box, derivative-free and possibly noisy functions
(Shahriari et al. 2016). This framework uses surrogate models, such as the likes of a
Gaussian Process (Rasmussen and Williams 2004) which describe a prior belief over the
possible objective functions in order to approximate them. The procedure itself is inher-
ently sequential: our function is first evaluated a few times, a surrogate model is then fit
with this information, which will later suggest the next point to be evaluated according
to a predefined acquisition function. These strategies typically aim to balance exploita-
tion and exploration, that is, areas where the posterior mean or variance of our surrogate
model are high respectively.
These strategies have recently grabbed the attention of machine learning researchers
over simpler black-box optimization strategies, such as grid search or random search
(Bergstra James and Bengio Yoshua 2012). It is specially interesting in areas such as au-
tomatic machine-learning hyperparameter optimization (Snoek, Larochelle, and Adams
2012), A/B testing (Chapelle and Li 2011) or recommender systems (Vanchinathan et al.
2014), among others. Furthermore, the framework is entirely modular; there are many
choices a user could take regarding the design of the optimization procedure: choice of
surrogate model, covariance function, acquisition function behaviour or hyperparameter
treatment, to name a few.
Here we present pyGPGO , an open-source Python package for Bayesian Optimization,
which embraces this modularity in its design. While additional Python packages exist
for the same purpose, either they are restricted for non-commercial applications (Snoek
2012), implement a small subset of the features (Yelp 2014), or do not provide a modular
interface (team. 2016). pyGPGO on the other hand aims to provide the highest degree
of freedom in the design and inference of a Bayesian optimization pipeline, while being
feature-wise competitive with other existing software. pyGPGO currently supports:

• Different surrogate models: Gaussian Processes, Student-t Processes, Random
Forests (& variants) and Gradient Boosting Machines.

• Most usual covariance function structures, as well as their derivatives: squared
exponential, Matèrn, gamma-exponential, rational-quadratic, exponential-sine and
dot-product kernel.

• Several acquisition function behaviours: probability of improvement, expected im-
provement, upper confidence bound and entropy-based, as well as their integrated
versions.

• Type II maximum-likelihood estimation of covariance hyperparameters.
• MCMC sampling for the full-bayesian treatment of hyperparameters (via pyMC3

(Salvatier, Wiecki, and C. 2016))
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Figure 1: pyGPGO in action.

pyGPGO is MIT-licensed and can be retrieved from both GitHub and PyPI, with extensive
documentation available at ReadTheDocs. pyGPGO is built on top of other well known
packages of the Python scientific ecosystem as dependencies, such as numpy, scikit-learn,
pyMC3 and theano.

Future work

pyGPGO is an ongoing project, and as such there are several improvements that will be
tackled in the near future:

• Support for linear combinations of covariance functions, with automatic gradient
computation.

• Support for more diverse acquisition functions, such as Predictive Entropy Search
(Hernández-Lobato, Hoffman, and Ghahramani 2014).

• A class for constrained Bayesian Optimization is planned for the near future. (Gard-
ner et al. 2014)
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