
pyGPGO: Bayesian Optimization for Python
José Jiménez1 and Josep Ginebra2

1 Computational Biophysics Laboratory, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de
Barcelona, Carrer del Dr. Aiguader 88. Barcelona 08003, Spain. 2 Department of Statistics and
Operations Research. Universitat Politècnica de Catalunya (UPC). Av. Diagonal 647, Barcelona
08028, Spain.DOI: 10.21105/joss.00431

Software
• Review
• Repository
• Archive

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Bayesian optimization has risen over the last few years as a very attractive method to
optimize expensive to evaluate, black box, derivative-free and possibly noisy functions
(Shahriari et al. 2016). This framework uses surrogate models, such as the likes of a
Gaussian Process (Rasmussen and Williams 2004) which describe a prior belief over the
possible objective functions in order to approximate them. The procedure itself is inher-
ently sequential: our function is first evaluated a few times, a surrogate model is then fit
with this information, which will later suggest the next point to be evaluated according
to a predefined acquisition function. These strategies typically aim to balance exploita-
tion and exploration, that is, areas where the posterior mean or variance of our surrogate
model are high respectively.
These strategies have recently grabbed the attention of machine learning researchers
over simpler black-box optimization strategies, such as grid search or random search
(Bergstra James and Bengio Yoshua 2012). It is specially interesting in areas such as au-
tomatic machine-learning hyperparameter optimization (Snoek, Larochelle, and Adams
2012), A/B testing (Chapelle and Li 2011) or recommender systems (Vanchinathan et al.
2014), among others. Furthermore, the framework is entirely modular; there are many
choices a user could take regarding the design of the optimization procedure: choice of
surrogate model, covariance function, acquisition function behaviour or hyperparameter
treatment, to name a few.
Here we present pyGPGO , an open-source Python package for Bayesian Optimization,
which embraces this modularity in its design. While additional Python packages exist
for the same purpose, either they are restricted for non-commercial applications (Snoek
2012), implement a small subset of the features (Yelp 2014), or do not provide a modular
interface (team. 2016). pyGPGO on the other hand aims to provide the highest degree
of freedom in the design and inference of a Bayesian optimization pipeline, while being
feature-wise competitive with other existing software. pyGPGO currently supports:

• Different surrogate models: Gaussian Processes, Student-t Processes, Random
Forests (& variants) and Gradient Boosting Machines.

• Most usual covariance function structures, as well as their derivatives: squared
exponential, Matèrn, gamma-exponential, rational-quadratic, exponential-sine and
dot-product kernel.

• Several acquisition function behaviours: probability of improvement, expected im-
provement, upper confidence bound and entropy-based, as well as their integrated
versions.

• Type II maximum-likelihood estimation of covariance hyperparameters.
• MCMC sampling for the full-bayesian treatment of hyperparameters (via pyMC3

(Salvatier, Wiecki, and C. 2016))

Jiménez et al., (2017). pyGPGO: Bayesian Optimization for Python. Journal of Open Source Software, 2(19), 431, doi:10.21105/joss.00431 1

https://doi.org/10.21105/joss.00431
https://github.com/openjournals/openjournals/joss-reviews/issues/431
https://github.com/hawk31/pyGPGO
https://doi.org/10.5281/zenodo.1040676
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00431


Figure 1: pyGPGO in action.

pyGPGO is MIT-licensed and can be retrieved from both GitHub and PyPI, with extensive
documentation available at ReadTheDocs. pyGPGO is built on top of other well known
packages of the Python scientific ecosystem as dependencies, such as numpy, scikit-learn,
pyMC3 and theano.

Future work

pyGPGO is an ongoing project, and as such there are several improvements that will be
tackled in the near future:

• Support for linear combinations of covariance functions, with automatic gradient
computation.

• Support for more diverse acquisition functions, such as Predictive Entropy Search
(Hernández-Lobato, Hoffman, and Ghahramani 2014).

• A class for constrained Bayesian Optimization is planned for the near future. (Gard-
ner et al. 2014)

References

Bergstra James, James, and Umontrealca Bengio Yoshua. 2012. “Random Search for
Hyper-Parameter Optimization.” Journal of Machine Learning Research 13: 281–305.
doi:10.1162/153244303322533223.
Chapelle, Olivier, and Lihong Li. 2011. “An Empirical Evaluation of Thompson Sam-
pling.” Advances in Neural Information Processing Systems, 2249—–2257. http://explo.
cs.ucl.ac.uk/wp-content/uploads/2011/05/An-Empirical-Evaluation-of-Thompson-Sampling-Chapelle-Li-2011.
pdf.
Gardner, Jacob R., Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger, and John
P. Cunningham. 2014. “Bayesian Optimization with Inequality Constraints.” Proceedings
of the 31st International Conference on Machine Learning 32: 937–45.
Hernández-Lobato, José Miguel, Matthew W Hoffman, and Zoubin Ghahramani. 2014.
“Predictive Entropy Search for Efficient Global Optimization of Black-box Functions.”

Jiménez et al., (2017). pyGPGO: Bayesian Optimization for Python. Journal of Open Source Software, 2(19), 431, doi:10.21105/joss.00431 2

https://github.com/hawk31/pyGPGO
https://pypi.python.org/pypi/pyGPGO/
http://pygpgo.readthedocs.io/en/latest/
https://doi.org/10.1162/153244303322533223
http://explo.cs.ucl.ac.uk/wp-content/uploads/2011/05/An-Empirical-Evaluation-of-Thompson-Sampling-Chapelle-Li-2011.pdf
http://explo.cs.ucl.ac.uk/wp-content/uploads/2011/05/An-Empirical-Evaluation-of-Thompson-Sampling-Chapelle-Li-2011.pdf
http://explo.cs.ucl.ac.uk/wp-content/uploads/2011/05/An-Empirical-Evaluation-of-Thompson-Sampling-Chapelle-Li-2011.pdf
https://doi.org/10.21105/joss.00431


Advances in Neural Information Processing Systems 28, 1–9. https://jmhldotorg.files.
wordpress.com/2014/10/pes-final.pdf.
Rasmussen, Carl E., and Christopher K. I. Williams. 2004. Gaussian processes for
machine learning. Vol. 14. 2. doi:10.1142/S0129065704001899.
Salvatier, J, TV Wiecki, and Fonnesbeck C. 2016. “Probabilistic programming in Python
using PyMC3.” PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.55.
Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas.
2016. “Taking the human out of the loop: A review of Bayesian optimization.” Proceedings
of the IEEE 104 (1): 148–75. doi:10.1109/JPROC.2015.2494218.
Snoek, Jasper. 2012. “Spearmint.” https://github.com/HIPS/Spearmint.
Snoek, Jasper, Hugo Larochelle, and Rp Adams. 2012. “Practical Bayesian opti-
mization of machine learning algorithms.” Advances in Neural Information …, 1–9.
doi:2012arXiv1206.2944S.
team., The scikit-optimize. 2016. “Scikit-Optimize.” https://github.com/scikit-optimize/
scikit-optimize.
Vanchinathan, Hastagiri P., Isidor Nikolic, Fabio De Bona, and Andreas Krause.
2014. “Explore-exploit in top-N recommender systems via Gaussian processes.” In
Proceedings of the 8th Acm Conference on Recommender Systems - Recsys ’14, 225–32.
doi:10.1145/2645710.2645733.
Yelp. 2014. “MOE.” https://github.com/Yelp/MOE.

Jiménez et al., (2017). pyGPGO: Bayesian Optimization for Python. Journal of Open Source Software, 2(19), 431, doi:10.21105/joss.00431 3

https://jmhldotorg.files.wordpress.com/2014/10/pes-final.pdf
https://jmhldotorg.files.wordpress.com/2014/10/pes-final.pdf
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1109/JPROC.2015.2494218
https://github.com/HIPS/Spearmint
https://doi.org/2012arXiv1206.2944S
https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize
https://doi.org/10.1145/2645710.2645733
https://github.com/Yelp/MOE
https://doi.org/10.21105/joss.00431

	Summary
	Future work
	References

