Limbo: A Flexible High-performance Library for Gaussian Processes modeling and Data-Efficient Optimization

Antoine Cully¹, Konstantinos Chatzilygeroudis², Federico Allocati², and Jean-Baptiste Mouret²

1 Personal Robotics Lab, Imperial College London, London, United Kingdom
2 Inria, CNRS, Université de Lorraine, LORIA, Nancy, France

Summary

Limbo (LIbrary for Model-Based Optimization) is an open-source C++11 library for Gaussian Processes and data-efficient optimization (e.g., Bayesian optimization, see (Shahriari et al. 2016)) that is designed to be both highly flexible and very fast. It can be used as a state-of-the-art optimization library or to experiment with novel algorithms with “plugin” components. Limbo is currently mostly used for data-efficient policy search in robot learning (Lizotte et al. 2007) and online adaptation because computation time matters when using the low-power embedded computers of robots. For example, Limbo was the key library to develop a new algorithm that allows a legged robot to learn a new gait after a mechanical damage in about 10-15 trials (2 minutes) (Cully et al. 2015), and a 4-DOF manipulator to learn neural networks policies for goal reaching in about 5 trials (Chatzilygeroudis et al. 2017).

The implementation of Limbo follows a policy-based design (Alexandrescu 2001) that leverages C++ templates: this allows it to be highly flexible without the cost induced by classic object-oriented designs (Driesen and Hölzle 1996) (cost of virtual functions). The regression benchmarks¹ show that the query time of Limbo’s Gaussian processes is several orders of magnitude better than the one of GPy (a state-of-the-art Python library for Gaussian processes²) for a similar accuracy (the learning time highly depends on the optimization algorithm chosen to optimize the hyper-parameters). The black-box optimization benchmarks³ demonstrate that Limbo is about 2 times faster than BayesOpt (a C++ library for data-efficient optimization, (Martinez-Cantin 2014)) for a similar accuracy and data-efficiency. In practice, changing one of the components of the algorithms in Limbo (e.g., changing the acquisition function) usually requires changing only a template definition in the source code. This design allows users to rapidly experiment and test new ideas while keeping the software as fast as specialized code.

Limbo takes advantage of multi-core architectures to parallelize the internal optimization processes (optimization of the acquisition function, optimization of the hyper-parameters of a Gaussian process) and it vectorizes many of the linear algebra operations (via the Eigen 3 library⁴ and optional bindings to Intel’s MKL). To keep the library lightweight, most of the optimizers in Limbo are wrappers around external optimization libraries:

- NLOpt⁵ (which provides many local, global, gradient-based, gradient-free algorithms)

¹http://www.resibots.eu/limbo/reg_benchmarks.html
²https://sheffieldml.github.io/GPy/
³http://www.resibots.eu/limbo/bo_benchmarks.html
⁴http://eigen.tuxfamily.org/
⁵http://ab-initio.mit.edu/nlopt
• libcmaes\(^6\) (which provides the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), and several variants of it (Hansen and Ostermeier 1996))
• a few other algorithms that are implemented in Limbo (in particular, RPROP (Riedmiller and Braun 1993), which is a gradient-based optimization algorithm)

The library is distributed under the CeCILL-C license\(^7\) via a GitHub repository,\(^8\) with an extensive documentation\(^9\) that contains guides, examples, and tutorials. The code is standard-compliant but it is currently mostly developed for GNU/Linux and Mac OS X with both the GCC and Clang compilers. New contributors can rely on a full API reference, while their developments are checked via a continuous integration platform (automatic unit-testing routines).

Limbo is currently used in the ERC project ResiBots\(^10\), which is focused on data-efficient trial-and-error learning for robot damage recovery, and in the H2020 projet PAL\(^11\), which uses social robots to help coping with diabetes. It has been instrumental in many scientific publications since 2015 (Cully et al. 2015) (Chatzilygeroudis, Vassiliades, and Mouret 2018) (Tarapore et al. 2016) (Chatzilygeroudis et al. 2017) (Pautrat, Chatzilygeroudis, and Mouret 2018) (Chatzilygeroudis and Mouret 2018)

Acknowledgments

This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (GA no. 637972, project “ResiBots”) and from the European Commission through the H2020 projects AnDy (GA no. 731540) and PAL (GA no. 643783).

References


\(^6\)https://github.com/beniz/libcmaes
\(^7\)http://www.cecill.info/index.en.html
\(^8\)http://github.com/resibots/limbo
\(^9\)http://www.resibots.eu/limbo
\(^10\)http://www.resibots.eu
\(^11\)http://www.pal4u.eu/


