SunPy: A Python package for Solar Physics

Stuart J. Mumford\textsuperscript{1, 2, 3}, Nabil Freij\textsuperscript{4}, Steven Christie\textsuperscript{5}, Jack Ireland\textsuperscript{6}, Florian Mayer\textsuperscript{6}, V. Keith Hughitt\textsuperscript{7}, Albert Y. Shih\textsuperscript{5}, Daniel F. Ryan\textsuperscript{8, 5}, Simon Liedtke\textsuperscript{6}, David Pérez-Suárez\textsuperscript{9}, Prithish Chakraborty\textsuperscript{10}, Vishnuarayan K I.\textsuperscript{9}, Andrew Inglis\textsuperscript{11}, Punyasloak Pattnaik\textsuperscript{12}, Brigitta Sipőcz\textsuperscript{13}, Rishabh Sharma\textsuperscript{6}, Andrew Leonard\textsuperscript{3}, David Stansby\textsuperscript{14}, Russell Hewett\textsuperscript{15}, Alex Hamilton\textsuperscript{6}, Laura Hayes\textsuperscript{5}, Asish Panda\textsuperscript{6}, Matt Earnshaw\textsuperscript{6}, Nitin Choudhary\textsuperscript{16}, Ankit Kumar\textsuperscript{6}, Prateek Chanda\textsuperscript{17}, Md Akramul Haque\textsuperscript{18}, Michael S Kirk\textsuperscript{11}, Michael Mueller\textsuperscript{6}, Sudarshan Konge\textsuperscript{6}, Rajul Srivastava\textsuperscript{6}, Yash Jain\textsuperscript{19}, Samuel Bennett\textsuperscript{16}, Ankit Baruah\textsuperscript{6}, Will Barnes\textsuperscript{20}, Michael Charlton\textsuperscript{6}, Shane Maloney\textsuperscript{21}, Nicky Chorley\textsuperscript{22}, Himanshu\textsuperscript{6}, Sanskar Modi\textsuperscript{6}, James Paul Mason\textsuperscript{6}, Naman9639\textsuperscript{6}, Jose Ivan Campos Rozo\textsuperscript{23}, Larry Manley\textsuperscript{6}, Agneet Chatterjee\textsuperscript{24}, John Evans\textsuperscript{6}, Michael Malocha\textsuperscript{6}, Monica G. Bobra\textsuperscript{25}, Sourav Ghosh\textsuperscript{24}, Airmansmith\textsuperscript{97}, Dominik Stańczak\textsuperscript{26}, Ruben De Visscher\textsuperscript{6}, Shresth Verma\textsuperscript{27}, Ankit Agrawal\textsuperscript{6}, Dumindu Buddhika\textsuperscript{6}, Swapnil Sharma\textsuperscript{6}, Jongyeob Park\textsuperscript{28}, Matt Bates\textsuperscript{6}, Dhruv Goel\textsuperscript{6}, Garrison Taylor\textsuperscript{29}, Goran Cetusic\textsuperscript{6}, Jacob\textsuperscript{6}, Mateo Inchaurrei\textsuperscript{6}, Sally Dacie\textsuperscript{30}, Sanjeev Dubey\textsuperscript{6}, Deepankar Sharma\textsuperscript{6}, Erik M. Bray\textsuperscript{6}, Jai Ram Rideout\textsuperscript{31}, Serge Zahnij\textsuperscript{3}, Tomas Meszaros\textsuperscript{6}, Abhigyan Bose\textsuperscript{6}, André Chicrala\textsuperscript{32}, Ankit\textsuperscript{6}, Chloé Guennou\textsuperscript{6}, Daniel D’Avella\textsuperscript{6}, Daniel Williams\textsuperscript{33}, Jordan Ballew\textsuperscript{6}, Nick Murphy\textsuperscript{34}, Priyank Lodha\textsuperscript{6}, Thomas Robitaille\textsuperscript{6}, Yash Krishan\textsuperscript{6}, Andrew Hill\textsuperscript{6}, Arthur Eigenbrot\textsuperscript{35}, Benjamin Mampae\textsuperscript{36}, Bernhard M. Wiedemann\textsuperscript{6}, Carlos Molina\textsuperscript{6}, Duygu Keşkek\textsuperscript{6}, Ishyiq Habib\textsuperscript{6}, Joseph Letts\textsuperscript{5}, Juanjo Bazán\textsuperscript{37}, Quinn Arbolante\textsuperscript{38}, Reid Gomillion\textsuperscript{6}, Yash Kothari\textsuperscript{6}, Yash Sharma\textsuperscript{6}, Abigail L. Stevens\textsuperscript{39, 40}, Adrian Price-Whelan\textsuperscript{11}, Ambar Mebroth\textsuperscript{6}, Arseniy Kustov\textsuperscript{6}, Brandon Stone\textsuperscript{6}, Trung Kien Dang\textsuperscript{42}, Emmanuel Arias\textsuperscript{6}, Fionnlagh Mackenzie Dover\textsuperscript{1}, Freek Verstringe\textsuperscript{26}, Gulsan Kumar\textsuperscript{43}, Harsh Mathur\textsuperscript{44}, Igor Babuschkin\textsuperscript{6}, Jaylen Wimbish\textsuperscript{6}, Juan Camilo Buitrago-Casas\textsuperscript{6}, Kalpesh Krishna\textsuperscript{45}, Kaustubh Hiware\textsuperscript{46}, Manas Mangaonkar\textsuperscript{6}, Matthew Mendero\textsuperscript{6}, Mickaël Schoentgen\textsuperscript{6}, Norbert G Gyenge\textsuperscript{47}, Ole Streicher\textsuperscript{48}, Rajasekhar Reddy Meekala\textsuperscript{6}, Rishabh Mishra\textsuperscript{6}, Shashank Srikanth\textsuperscript{43}, Sarthak Jain\textsuperscript{6}, Tanmay Yadav\textsuperscript{49}, Tessa D. Wilkinson\textsuperscript{4}, Tiago M. D. Pereira\textsuperscript{50, 51}, Yudhik Agrawal\textsuperscript{12}, Jamescalixto\textsuperscript{6}, yasintoda\textsuperscript{6}, and Sophie A. Murray\textsuperscript{52}

1 SP2RC, School of Mathematics and Statistics, The University of Sheffield, UK 2 National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 3 Aperio Software Ltd., Headingley Enterprise and Arts Centre, Bennett Road, Leeds LS6 3HN 4 Institute for Environmental Analytics, University of Reading, Reading RG6 6BX 5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 6 A Nova 7 Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-9760, USA 7 American University, Washington, DC 20016, USA 9 University College London, Gower Street, London, UK 10 Manipal Rachna University 11 Catholic University of America / NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 12 International Institute of Information

Summary

The Sun, our nearest star, is a local laboratory for studying universal physical processes. Solar physics as a discipline includes studying the Sun both as a star and as the primary driver of space weather throughout the heliosphere. Due to the Sun’s proximity, the temporal and spatial resolution of solar observations are orders of magnitude larger than those of other stars. This leads to significant differences in the data-analysis software needs of solar physicists compared with astrophysicists.

The sunpy Python package is a community-developed, free, and open-source solar data analysis environment for Python. It is managed by the SunPy Project, an organization that facilitates and promotes the use of open development and open source packages like sunpy through community engagement and tools such as GitHub, mailing lists, and matrix.

The four most significant subpackages of sunpy are described below.

The sunpy.net subpackage provides a unified interface that simplifies and homogenizes search and retrieval by querying and downloading data from many solar data sources, irrespective of the underlying data-source client. It currently supports sourcing data from 18 different space- and ground-based solar observatories.

The sunpy.map and sunpy.timeseries subpackages provide core data types (Map and TimeSeries, respectively) that are designed to provide a general, standard, and consistent interface
for loading and representing solar data across different instruments and missions. These classes load data which conform to solar physics standards and conventions such as FITS (Wells, Greisen, & Harten, 1981), FITS World Coordinate Systems (WCS) (Greisen & Calabretta, 2002), and solar-specific FITS headers (Thompson, 2006), while allowing customization to account for differences in specific instruments. Visualization methods are also provided to inspect and plot those data. Example visualizations of both TimeSeries and Map are shown in Figure 1.

**Figure 1:** Left: An example of TimeSeries for the GOES X-ray Sensor in two broadband channels. Right: A Map of the extreme ultraviolet 171 Å channel of AIA corresponding to the time of a solar flare depicted by the vertical dashed line in the left-hand panel.

The `sunpy.coordinates` subpackage provides support for representing and transforming coordinates used in solar physics and astrophysics. These coordinates may represent events (e.g., flares), features on or above the Sun (e.g., magnetic loops), or the position of structures traveling throughout the heliosphere (e.g., coronal mass ejections). The package currently implements the most widely used Sun-centered coordinate frames, and extends `astropy.coordinates`.

Other functionality provided by `sunpy` includes physical models of solar behavior, such as differential rotation, color maps for certain data sources, image-processing routines integrated with Map, and useful physical parameters such as constants.

The `sunpy` package is designed to be extensible, which means that it is easy to add support for additional instruments or data sources. It relies heavily on the `astropy` (The Astropy Collaboration et al., 2018) Python package as well as the scientific python stack (e.g. `numpy` (van der Walt, Colbert, & Varoquaux, 2011), `scipy` (Jones, Oliphant, Peterson, & others, n.d.), `matplotlib` (Hunter, 2007) and `pandas` (McKinney, 2010)).

A more complete description of the SunPy Project and the `sunpy` package, including the methodology, development model, and implementation, as well as a comparison with other commonly-used packages in solar physics, can be found in (Barnes et al., 2020).

The SunPy Project supports affiliated packages, which build upon or extend the functionality of sunpy. The current affiliated packages are `drms` (Glogowski, Bobra, Choudhary, Amezcua, & Mumford, 2019), `ndcube`, `radiospectra` and `IRISPy`. The Project is also a member of the Python in Heliophysics community (PyHC, Annex et al., 2018), whose mission is to enable interdisciplinary analysis across all sub-disciplines of heliophysics by adhering to standards for code development and interoperability.
Acknowledgements

SunPy is a NumFOCUS sponsored package.

References


