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Summary
Scientific Computational Imaging Code (SCICO) is a Python package for solving the inverse
problems that arise in scientific imaging applications. Its primary focus is providing methods for
solving ill-posed inverse problems by using an appropriate prior model of the reconstruction space.
SCICO includes a growing suite of operators, cost functionals, regularizers, and optimization
routines that may be combined to solve a wide range of problems, and is designed so that it is
easy to add new building blocks. SCICO is built on top of JAX rather than NumPy, enabling
GPU/TPU acceleration, just-in-time compilation, and automatic gradient functionality, which
is used to automatically compute the adjoints of linear operators. An example of how to solve
a multi-channel tomography problem with SCICO is shown in Figure 1. The SCICO source
code is available from GitHub, and pre-built packages are available from PyPI. It has extensive
online documentation, including API documentation and usage examples, which can be run
online at Google Colab and binder.

Community contributions, including bug reports, feature requests, and code contributions, are
welcomed at https://github.com/lanl/scico.

Tomographic Measurement Reconstruction

y = Ax+ ⇠

A = linop.DiagonalStack(
3*[linop.radon_astra.TomographicProjector(

x.shape[1:], 1, x.shape[1], angles)],)
Ax = A @ x
w = scico.numpy.exp(-Ax)
W = linop.Diagonal(w)
ξ = σ * scico.random.randn(w.shape)[0] * (1/w) ** 0.5
y = Ax + ξ

C1 = linop.Identity(x.shape)
g1 = functional.NonNegativeIndicator()
C2 = linop.FiniteDifference(x.shape, axes=(1, 2), append=0)
g2 = α * functional.L21Norm(l2_axis=(0, 1))

solver = optimize.admm.ADMM(
f=loss.SquaredL2Loss(y=y, A=A, W=W),
g_list=[g1, g2],
C_list=[C1, C2],
rho_list=[1.0e0, 1.0e2],
x0=scico.numpy.zeros(x.shape),
maxiter=30,
subproblem_solver=optimize.admm.LinearSubproblemSolver(

cg_kwargs={"tol": 5e-5, "maxiter": 25}),
itstat_options={"display": True, "period": 1})

x_hat = solver.solve()
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Figure 1: Solving a multi-channel tomography problem with SCICO.

Statement of Need
In traditional imaging, the burden of image formation is placed on physical components, such
as a lens, with the resulting image being taken from the sensor with minimal processing. In
computational imaging, in contrast, the burden of image formation is shared with or shifted

Balke et al. (2022). Scientific Computational Imaging Code (SCICO). Journal of Open Source Software, 7(78), 4722. https://doi.org/10.21105/
joss.04722.

1

https://orcid.org/0000-0002-1716-5923
https://orcid.org/0000-0002-5641-3491
https://orcid.org/0000-0002-8442-2897
https://orcid.org/0000-0001-7645-252X
https://orcid.org/0000-0001-7485-5966
https://orcid.org/0000-0002-4767-1843
https://doi.org/10.21105/joss.04722
https://github.com/openjournals/joss-reviews/issues/4722
https://github.com/lanl/scico
https://doi.org/10.5281/zenodo.7255839
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/vitorsr
https://github.com/DanNixon
https://github.com/lucaferranti
https://creativecommons.org/licenses/by/4.0/
https://jax.readthedocs.io/en/latest/
https://numpy.org/
https://github.com/lanl/scico
https://github.com/lanl/scico
https://scico.rtfd.io/
https://colab.research.google.com/github/lanl/scico-data/blob/colab/notebooks/index.ipynb
https://mybinder.org/v2/gh/lanl/scico-data/binder?labpath=notebooks%2Findex.ipynb
https://github.com/lanl/scico
https://doi.org/10.21105/joss.04722
https://doi.org/10.21105/joss.04722


to computation, with the resulting image typically being very different from the measured
data. Common examples of computational imaging include demosaicing in consumer cameras,
computed tomography and magnetic resonance imaging in medicine, and synthetic aperture
radar in remote sensing. This is an active and growing area of research, and many of these
problems have common properties that could be supported by shared implementations of
solution components.

The goal of SCICO is to provide a general research tool for computational imaging, with a
particular focus on scientific imaging applications, which are particularly underrepresented in
the existing range of open-source packages in this area. While a number of other packages
overlap somewhat in functionality with SCICO, only a few support execution of the same
code on both CPU and GPU devices, and we are not aware of any that support just-in-time
compilation and automatic gradient computation, which is invaluable in computational imaging.
SCICO provides all three of these valuable features by being built on top of JAX rather than
NumPy.

Solving Imaging Inverse Problems in SCICO
SCICO provides a set of building blocks that can be used to express a wide variety of problems
and their corresponding solutions. These building blocks include operators for representing
the forward model of an imaging problem, functionals for representing data fidelity and
regularization terms, and optimization algorithms for minimizing these functionals. The online
documentation includes a guide to the use of these components as well as numerous example
scripts demonstrating their use in practice.

Machine Learning
SCICO includes an implementation of the DnCNN denoiser (Zhang et al., 2017), which can be
applied to other inverse problems via the plug-and-play priors (PPP) (Kamilov et al., 2022;
Sreehari et al., 2016; Venkatakrishnan et al., 2013) framework (see Figure 2). A number
of other leading machine learning methods have been implemented, and are expected to be
merged into the main SCICO GitHub branch in the near future.

Ground truth Blurred, noisy image: PSNR 14.30 (dB) Deconvolved image: PSNR 20.67 (dB)

Figure 2: Image deconvolution via PPP with DnCNN denoiser.

Advantages of JAX-based Design
The vast majority of scientific computing packages in Python are based on NumPy and SciPy.
SCICO, in contrast, is based on JAX, which provides most of the same features, but with
the addition of automatic differentiation, GPU support, and just-in-time (JIT) compilation.
In addition to its obvious application in gradient-based minimization methods, automatic
differentiation allows automatic computation of the adjoint operator of a linear operator, the
manual derivation of which is often time-consuming.
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