
CFD Python: the 12 steps to Navier-Stokes equations
Lorena A. Barba1 and Gilbert F. Forsyth1, 2

1 The George Washington University 2 Capital One

DOI: 10.21105/jose.00021

Software
• Review
• Repository
• Archive

Submitted: 01 July 2018
Published: 12 November 2018

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

The CFD Python learning module is a set of Jupyter notebooks, consisting of 12 “core”
lessons, 3 “bonus” lessons, and a “lesson zero” as a quick intro to Python for numerical
computing. This practical module takes students through 12 steps, incrementally guiding
them to program a solution to the two-dimensional Navier–Stokes equation, using finite
differences. The steps are the following:

• Steps 1–4 are in one dimension: (i) linear convection with a step-function initial
condition (IC) and appropriate boundary conditions (BC); with the same IC/BCs:
(ii) nonlinear convection, and (iii) diffusion only; (iv) Burgers’ equation, with a
saw-tooth IC and periodic BCs.

• Steps 5–10 are in two dimensions: (v) linear convection with a square function IC
and appropriate BCs; with the same IC/BCs: (vi) nonlinear convection, and (vii)
diffusion only; (viii) Burgers’ equation; (ix) Laplace equation, with zero IC and both
Neumann and Dirichlet BCs; (x) Poisson equation in 2D.

• Steps 11–12 solve the Navier–Stokes equation in 2D: (xi) cavity flow; (xii) channel
flow.

Students learn many valuable lessons as the module guides them through these steps
(they should not skip any!). The incremental nature of the exercises means they get
a sense of achievement at the end of each lesson, and they feel they are learning with
low effort. As they progress, they naturally practice code re-use and they incrementally
learn programming and plotting techniques. As they analyze their results, they learn
about numerical diffusion, accuracy, and convergence. In about four weeks, they become
moderately proficient programmers and are motivated to start discussing more theoretical
matters.

Statement of need

Many university courses in computational fluid dynamics (CFD) follow a similar order
of topics. As reflected in various textbooks, the course usually starts with the subject
of interpolation, going on to numerical integration of ordinary differential equations, and
continuing to standard material on partial differential equations. Students encounter
theory of stability, order of convergence, and numerical diffusion, but they often do not
gain much experience programming. This learning module places emphasis on practical
experience with the programming of numerical solutions to fundamental mathematical
models that can represent fluid behavior. It is unique in its approach of taking a be-
ginner in a step-by-step fashion to complete the solution of a fairly complex numerical

Barba et al., (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Source Education, 1(9), 21. https://doi.org/10.
21105/jose.00021

1

https://doi.org/10.21105/jose.00021
https://github.com/openjournals/jose-reviews/issues/21
https://github.com/barbagroup/CFDPython
https://doi.org/10.5281/zenodo.1484512
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/jose.00021
https://doi.org/10.21105/jose.00021


problem: two-dimensional cavity flow via the Navier–Stokes equations, discretized with
finite differences.

The “12 steps to Navier–Stokes” lessons have proved effectiveness. They were used in the
classroom as part of a university course for four years in a row (Boston University, 2009 to
2013), guiding several dozen students to develop their Navier–Stokes solutions. Written
as a set of Jupyter notebooks, the module was the backbone of an intensive tutorial
held as part of the 2013 Latin American Symposium on High-Performance Computing in
Mendoza, Argentina (http://ecar2013.hpclatam.org).

The module is complete and can be easily adopted by other instructors who wish to teach
CFD using a practical approach. An instructor can complement the lessons with brief
presentations, class discussions, and readings. For example, after students experiment
with different values of the parameters in the first two steps, they will encounter situations
when the solution blows up, due to numerical instability. As they become perplexed of
this behavior, the instructor can use the “bonus” lesson about the stability criterion of
Courant–Friedrichs–Lewy (CFL), and complement with a brief lecture on the concepts of
consistency, stability and convergence.

We know that instructors around the world have already adopted these lessons: many
of them have written us with expressions of gratitude (or with improvement sugges-
tions). The collection was translated to Spanish by a volunteer (Fran Navarro) in 2015
(https://github.com/franktoffel/CFDPython-ES), another user (Manuel Ramsaier) made
screencast videos with Matlab versions of the lessons (https://youtu.be/QOeTk6C6dZI),
and a professor in Singapore (Claus-Dieter Ohl) incorporates the lessons in his local CFD
course (http://cav2012.sg/cdohl/CFD_course/). After Barba left Boston University, the
instructor who took over the CFD course there continued to use the module. She writes:
“The 12 steps are great for building a student’s computational toolbox, building her un-
derstanding of numerical methods, and providing some benchmark solutions for validating
full CFD simulations. I use these 12 steps in the beginning weeks of my graduate level
CFD course every year. They help lay the perfect foundation for further analysis and use
of available CFD tools.” (Prof. Sheryl Grace, 2018.)

The lessons are also often mentioned in posts on sites like CFD Online, Quora, and
others, and they are cited in a SciPy Conference paper (Ketcheson, 2014) and a book
(Rossant, 2018). A portion of the module was translated to use the Devito package (a
finite-difference code-generation tool based on SymPy), as part of their tutorials. Various
translations of the lessons to other programming languages can be found online.

Notes on instructional design

Based on the experience of the authors after developing the CFD Python learning
module, and other modules following a similar approach, we adopted this basic design
pattern for creating lessons using computable content:

1. Break it down into small steps
2. Chunk small steps into bigger steps
3. Add narrative and connect
4. Link out to documentation
5. Interleave easy exercises
6. Spice with challenge questions/tasks
7. Publish openly online

Regarding the inclusion of step-by-step, incremental code exposition, some critics are
hesitant with “giving the solution” to the learners, and propose an alternative approach

Barba et al., (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Source Education, 1(9), 21. https://doi.org/10.
21105/jose.00021

2

https://web.archive.org/web/20181111235234/http://ecar2013.hpclatam.org
https://github.com/franktoffel/CFDPython-ES
https://youtu.be/QOeTk6C6dZI
http://cav2012.sg/cdohl/CFD_course/
https://www.cfd-online.com/
https://www.quora.com
http://www.opesci.org/devito/tutorials.html
https://doi.org/10.21105/jose.00021
https://doi.org/10.21105/jose.00021


where the learners have to struggle and build their code solutions from scratch. When
teaching novices, however, several studies show significant learning improvements when
using worked examples, versus problem-solving with no guidance. This is called the
“worked-example effect,” and it is a widely studied cognitive-load effect (Sweller, 2006,
Chen, Kalyuga, & Sweller (2015)). It applies particularly when teaching complex material
to novice learners, resulting in heavy working-memory load: strong guidance is likely to
result in enhanced performance, in this case.

Other learning modules following this design pattern include the AeroPython lessons in
classical aerodynamics (https://github.com/barbagroup/AeroPython) and the five mod-
ules of the course “Practical Numerical Methods with Python,” a.k.a., Numerical MOOC
(https://github.com/numerical-mooc/numerical-mooc).

References

Chen, O., Kalyuga, S., & Sweller, J. (2015). The worked example effect, the genera-
tion effect, and element interactivity. Journal of Educational Psychology, 107(3), 689.
doi:10.1037/edu0000018

Ketcheson, D. I. (2014). Teaching numerical methods with IPython notebooks and
inquiry-based learning. In Stéfan van der Walt & James Bergstra (Eds.), Proceed-
ings of the 13th Python in Science Conference (pp. 19–25). Retrieved from http:
//hdl.handle.net/10754/346689

Rossant, C. (2018). IPython interactive computing and visualization cookbook: Over 100
hands-on recipes to sharpen your skills in high-performance numerical computing and data
science in the jupyter notebook. Packt Publishing Ltd.

Sweller, J. (2006). The worked example effect and human cognition. Learning and in-
struction, 16(2), 165–169. doi:10.1016/j.learninstruc.2006.02.005

Barba et al., (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Source Education, 1(9), 21. https://doi.org/10.
21105/jose.00021

3

https://github.com/barbagroup/AeroPython
https://github.com/numerical-mooc/numerical-mooc
https://doi.org/10.1037/edu0000018
http://hdl.handle.net/10754/346689
http://hdl.handle.net/10754/346689
https://doi.org/10.1016/j.learninstruc.2006.02.005
https://doi.org/10.21105/jose.00021
https://doi.org/10.21105/jose.00021

	Summary
	Statement of need
	Notes on instructional design
	References

