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Description

Mikrokosmos is an educational untyped and simply typed lambda-calculus interpreter.
For students, it is a tool to learn lambda-calculus and intuitionistic logic by coding.
For educators, it is a didactic resource, grounded in the theoretical implementation of
a functional programming language, so that they can integrate it with other learning
materials. Mikrokosmos can be used on three different environments: (1) as a command
line executable, implementing a read-eval-print loop interpreter; (2) as a Jupyter kernel,
executing code blocks from a Jupyter notebook (Jupyter Development Team, 2016); and
(3) as a Javascript web application, that can be used in conjunction with web text editors
such as Codemirror1 to create an online programming environment.

Mikrokosmos provides a minimalist and unified syntax for both simply typed and un-
typed lambda-calculus. The same expressions can be used to define untyped and typed
terms. This helps highlighting the differences between them, and avoids the added com-
plexity of two different syntaxes. Moreover, the syntax is heavily inspired by Haskell so
that it facilitates transferring ideas to a fully-fledged functional programming language.
Mikrokosmos comes also bundled with a self-documenting standard library of common
lambda-calculus combinators and data structures which can be consulted directly from
the interpreter and ease the learning process, while demonstrating how to write basic
programs on lambda-calculus.

The interpreter focuses on being portable, close to the theory and suited for learning
and experimentation. For the untyped lambda-calculus, Mikrokosmos works as a Turing-
complete programming language. Following Barendregt (1984), it implements the leftmost
evaluation strategy, which finds a normal form whenever it exists, allowing infinite data
structures and fixed point definitions. The evaluation can be visualized step-by-step,
showing how the internal representation of a lambda term using De Bruijn indexes works
(De Bruijn, 1972). Optional coloring of the output facilitates this purpose. With re-
gards to combinatorial logic, a translation between lambda terms and SKI combinators
is available. It follows a standard algorithm from Hindley & Seldin (2008) that allows
the user to input and visualize results in both formats. On the typed side, Mikrokosmos
facilitates the study of the Curry-Howard isomorphism; see Sørensen & Urzyczyn (2006)
for a description of this correspondence. To this end, it implements implicit typing à la
Curry: the most general possible type is automatically inferred for any term, providing
a limited form of polymorphism. Given any typed lambda expression, Mikrokosmos can
visualize the logical derivation tree it codifies in the style of Gentzen, sharing the notation
of introductory articles and textbooks such as those by Wadler (2015) or Girard, Taylor,
& Lafont (1989).

1http://codemirror.net/
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Figure 1. An example Gentzen diagram of a proof on intuitionistic logic.

The latest release of the interpreter can be installed via stack or cabal from Hackage2 and
the documentation can be found in https://mroman42.github.io/mikrokosmos/, where in-
stallation and usage instructions for the Jupyter kernel and the Javascript web application
are also provided.

Statement of need

When teaching the logical structure of lambda-calculus, it is common to ask the students
to evaluate lambda terms by hand. This approach seems necessary on the first stages of
the learning process, but turns out to be very tedious while dealing with complex terms.
Just as one would never teach C programming language by making students execute large
programs by hand, it makes sense to provide an interpreter and a programming environ-
ment allowing the students to explore lambda-calculus without having to worry about
the details and focusing on the big picture. Because of this, there is a need for a lambda-
calculus interpreter. Untyped lambda-calculus interpreters are common, but they are
usually developed as programming exercises, and only provide ascetic interpreters lacking
any didactic features. Mikrokosmos addresses the need for an educational interpreter with
multiple ways of visualizing the results, a clean and coherent syntax, libraries, and the
possibility of integration in web pages and Jupyter notebooks.

The Curry-Howard isomorphism between simply-typed lambda calculus and propositional
intuitionistic logic as described by Wadler (2015) is sometimes illustrated using the Haskell
programming language or other similar functional languages. This approach, however, is
theoretically questionable. On the one hand, Haskell implements a polymorphic lambda
calculus corresponding to second-order intuitionistic logic, as depicted by Wadler (2007);
but it is not total and makes every type inhabited, which is a fatal flaw for our purpose.
On the other hand, it fails to represent a cartesian closed category due to its support
for strict evaluation, partial functions and undefined values; as justified by Danielsson,
Hughes, Jansson, & Gibbons (2006). Even if these deviations from the theory are justified

2https://hackage.haskell.org/package/mikrokosmos
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by the needs of a real-world programming language, a student faced with Haskell as an
example of the “Propositions as Types” paradigm may find it difficult to determine exactly
what parts of the language should be ignored in order to retain a sound interpretation.
Mikrokosmos, on the contrary, simply implements the internal language of a bicartesian
closed category, following, for instance, Lambek & Scott (1989), and avoiding any spurious
additions.

Simply-typed lambda calculus interpreters of this kind are rare; the existing software
usually implements some particular primitive types, input-output, and tends not to use
Curry typing. It is not designed to allow the study of the Curry-Howard correspondence.

Mikrokosmos has already been tested on the classroom and its web application can be
easily deployed to create interactive tutorials suited for the needs of each specific course.
In particular, Mikrokosmos and its interactive tutorial have already been used as a module
for the course “Lógica y Programación” (Logic and Programming) taught by Pedro A.
García-Sánchez at the University of Granada. The students were able to complete the
exercises of the tutorial and to use the interpreter as an aid while completing other problem
sets of the course.
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