
StateMint: A Set of Tools for Determining Symbolic
Dynamic System Models Using Linear Graph Methods
Cameron Devine1, Joseph L. Garbini1, and Rico A. R. Picone2, 1

1 University of Washington, Department of Mechanical Engineering 2 Saint Martin’s University,
Department of Mechanical Engineering

DOI: 10.21105/jose.00044

Software
• Review
• Repository
• Archive

Submitted: 29 December 2018
Published: 09 April 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Abstract

StateMint is a set of software tools that reduce sets of dynamic equations and their
constraints to a state-space model and related dynamic system model formulations. These
tools are especially useful for students of system dynamics, many of whom can become
lost in this algebraic reduction. StateMint includes a Mathematica package, a Python
package, and a web interface that is built as a layer on top of the Python package.

Introduction

When deriving a system’s state-space model—that is, the vector state (differential) equa-
tion and the vector output (algebraic) equation—in the manner of Rowell and Wormley1

(Rowell & Wormley, 1997), one begins by forming scalar equations for each lumped-
parameter element, describing its dynamics; we call these “elemental equations.” We
assume power enters and exits each element through a finite number of ports, usually
one. Let the total number of ports in a given system be N , which is equal to the number
of elemental equations. N constraint equations that describe the topology of the sys-
tem can be defined by the interconnection of the elements. A set of 2N differential and
algebraic equations and 2N unknown variables result. If properly constructed (Rowell
& Wormley, 1997), N of the unknown variables can be immediately eliminated through
direct substitution. Finally, the set of equations can be reduced to a system of first-order
differential equations in state and input variables and their time-derivatives, alone.

Statement of Need

In our experience,2 a student manually reducing the set of equations, will often make some
minor mistake during the tedious process of the last two steps above. This is typically
of a “book keeping” variety that, if it teaches the student anything, it is not system
dynamics. Instead, the student can be easily discouraged and confused about where they
have made their mistake. Furthermore, the tedious nature of the reduction can dampen
a student’s desire to explore interesting problems. The software tools presented here
automate this algebraic reduction. They allow students to focus on understanding the
process of dynamic system modeling and to experience a wider breadth of problems.

1This method is also described in the tutorial.
2Collectively, we have almost 30 years of experience teaching system dynamics.

Devine et al., (2019). StateMint: A Set of Tools for Determining Symbolic Dynamic System Models Using Linear Graph Methods. Journal of
Open Source Education, 2(14), 44. https://doi.org/10.21105/jose.00044

1

https://doi.org/10.21105/jose.00044
https://github.com/openjournals/jose-reviews/issues/44
https://github.com/CameronDevine/StateMint
https://doi.org/10.5281/zenodo.2633330
http://creativecommons.org/licenses/by/4.0/
https://github.com/CameronDevine/StateMint/blob/master/tutorial.md
https://doi.org/10.21105/jose.00044


Software Tools

Originally, utilizing the advanced symbolic mathematics capabilities of Mathematica, a
package was written to perform these algebraic reductions. However, it requires students
to install and learn the basics of Mathematica. So a web interface was designed to allow
students to use this tool without any knowledge of programming by allowing equations
to be entered with notation similar to that of many scientific calculators. To support this
interface, a Python package was written with the same functionality as the Mathematica
package and is deployed as an Amazon AWS Lambda function for use by the web interface.
This interface can be accessed by any device with an internet connection and a web
browser.

Web Interface

The web interface (statemint.stmartin.edu) has text boxes for entering equations and
variables. A special form of the constraint equations is required, as described in the
tutorial, based on the text of Rowell and Wormley (Rowell & Wormley, 1997). Once
entered, the equations are sent to the Lambda function and the dynamic system model
is returned. The results are then displayed as rendered math or source code in any
of the following languages: LATEX, Matlab, Python, and Mathematica. Examples and
documentation are built-in, allowing the user to learn the interface as they use it. The
user input can be shared, downloaded, and saved for later use or modification. Because
this interface utilizes Amazon AWS serverless resources, required maintenance and costs
are minimized. An automated installer for independent deployment of the website is also
included in the StateMint repository.

Python Package

The Python package uses the SymPy library (Meurer et al., 2017) to symbolically reduce
the set of elemental and constraint equations to the state and output equations. The
main function, StateMint.Solve, accepts the input variables, state variable elemental
equations, other elemental equations, constraint equations, and output variables. This
function returns an object that includes the resulting system as a state-space model and
(when applicable) a transfer function. Auxiliary functions, StateMint.to_numpy.array
and StateMint.to_numpy.matrix are included to convert the SymPy symbolic matrices
to NumPy (Oliphant, 2015) arrays or matrices respectively. These functions accept a
symbolic matrix and a dictionary mapping system parameters to numeric values. The
StateMint package is documented at statemint.readthedocs.io and works for both linear
and nonlinear systems.

A detailed example of how to use the Python StateMint package is included in the
StateMint repository.

Mathematica Package

The Mathematica package StateMint can be installed as described in the documentation.
The central function of the package is stateEquations, which uses an algorithm similar
to that of the Python package, above, to derive the state equations. It takes as arguments
lists of elemental equations, constraint equations, primary variables, and input variables

Devine et al., (2019). StateMint: A Set of Tools for Determining Symbolic Dynamic System Models Using Linear Graph Methods. Journal of
Open Source Education, 2(14), 44. https://doi.org/10.21105/jose.00044

2

http://statemint.stmartin.edu/
https://github.com/CameronDevine/StateMint/blob/master/tutorial.md
https://github.com/CameronDevine/StateMint/tree/master/web
https://statemint.readthedocs.io/en/latest/
https://github.com/CameronDevine/StateMint/blob/master/python/Example.ipynb
https://github.com/CameronDevine/StateMint/blob/master/mathematica/README.md
https://doi.org/10.21105/jose.00044


and returns the vector state equation, state variables, and the time-derivative of the state
variables.

The outputEquations function derives the output equations given output expressions
in terms of primary and secondary variables (including inputs). The function accepts
lists of input variables, state variables, elemental and constraint equations, and output
expressions.

The functions stateEquations and outputEquations yield what are in general nonlinear
state and output equations. Linear state and output equations are typically written in a
standard vector form described by matrices A, B, C, and D (and sometimes E and F) (Rowell
& Wormley, 1997). The linearizeState function accepts lists of input variables, state
variables, and the time-derivatives of the state vector (from stateEquations) and returns
the A, B, and E matrices. Similarly, linearizeOutput returns the C, D, and F matrices.

A detailed example of how to use the Mathematica StateMint package is included in the
StateMint repository. This package is best used by those who are already familiar with
Mathematica, or for more complex problems where Mathematica may perform better
than SymPy.

Acknowledgments

The authors would like to acknowledge the work of Gavin Basuel who designed the user
experience for the web interface and helped with HTML/CSS development.

References

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., et al. (2017). SymPy: Symbolic computing in python. PeerJ Computer Science, 3,
e103. doi:10.7717/peerj-cs.103

Oliphant, T. E. (2015). Guide to numpy (2nd ed.). USA: CreateSpace Independent
Publishing Platform.

Rowell, D., & Wormley, D. N. (1997). System dynamics: An introduction. Prentice Hall.

Devine et al., (2019). StateMint: A Set of Tools for Determining Symbolic Dynamic System Models Using Linear Graph Methods. Journal of
Open Source Education, 2(14), 44. https://doi.org/10.21105/jose.00044

3

https://github.com/CameronDevine/StateMint/blob/master/mathematica/Example.nb
https://www.gavinbasuel.com/
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.21105/jose.00044

	Abstract
	Introduction
	Statement of Need
	Software Tools

	Web Interface
	Python Package
	Mathematica Package
	Acknowledgments
	References

