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Abstract

This paper presents mLEARn, an open-source implementation of multi-layer perceptron
in C++. The techniques and algorithms implemented represent existing approaches in
machine learning. mLEARn is written using simple C++ constructs. The aim of mLE
ARn is to provide a simple and extendable machine learning platform for students in
courses involving C++ and machine learning. The source code and documentation can
be downloaded from https://github.com/kalu-o/mLEARn.

Introduction

Artificial neural networks (ANNs) comprise a well-studied area of deep learning. This
is because of their importance in many areas, from autonomous driving through speech
technologies (Graves et al., 2013). The two main categories are usually recurrent (feed-
back) and feed-forward architectures (Bishop, 1995). Deep learning is currently an active
research area in machine learning.

Statement of Need

Currently, popular deep learning frameworks are available, such as MXNet (Chen et
al., 2015), Caffe (Jia et al., 2014) and TensorFlow (Abadi et al., 2016). Students often
use these as off-the-shelf machine learning tools and have little or no control over the
implementation. One of the reasons for this is because the codes are advanced and
production ready. mLEARn addresses this and it can be used as an off-the-shelf machine
learning tool. Furthermore, the coding style makes it easier to apply what was learnt in
machine learning/C++ courses and extend the functionalities. This makes it easier to
understand machine learning algorithms from first principles and extend the state-of-the-
art.

Architecture of mLEARn

The classes implemented in mLEARn are Node, NetNode, Activation, CostFunction, Layer,
Network, DataReader and Optimizer. The Node class is the fundamental data structure
used; and NetNode is an extension of the Node class used for multi-layer perceptron.
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The Activation class handles activation functions in the network. Currently, the func-
tions implemented are sigmoid, tanh, rectified linear unit (ReLU), leaky ReLU, identity,
softmax and exponential linear unit (ELU). The CostFunction class is responsible for ob-
jective/loss functions. Cost functions implemented are mean squared error (MSE), mean
absolute error (MAE) and cross entropy.

Figure 1: The Node class

Figure 2: The CostFunction class

The Network class is a classic MLP consisting of sequences of layers, i.e., one or more
hidden layers and an output layer. The DataReader class is the base class responsible
for reading train/test datasets into features and labels. Three different readers are im-
plemented, namely MNISTReader, GenericReader and IrisReader. The Optimizer class
is the base class responsible for the training algorithms. Three optimizers are currently
implemented: mini-batch stochastic gradient descent (Kiefer & Wolfowitz, 1952; Ruder,
2016), adaptive gradient (Adagrad) (Duchi et al., 2011) and root mean square propagation
(RMSProp) (Tieleman & Hinton, 2012).

Figure 3: The DataReader class

Figure 4: The Optimizer class

A number of new enhancements such as automatic differentiation, distributed computing
and GPU support are planned to be added in the future.

Use in Teaching and Learning Context

The following describes some use cases in the context of teaching and learning, as example
assigned student tasks.

1. Read a custom data set
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This will involve extending the DataReader class in data_reader.cpp to read a custom
data set. The learning objective is to enable students to extend the functionalities of a
base class.

2. Activation functions

At the end of this exercise, students are expected to implement common activation func-
tions and their derivatives. A number of activation functions such as Sigmoid, Tanh, etc.
are already provided. Possible course assignments include: * Removing the implemen-
tations of these functions and asking students, for example, to implement the Sigmoid
function and its derivative. * Extending with a novel activation function.

3. Understanding basic learning algorithms (back-propagation)

The back-propagation algorithm is a basic machine learning algorithm often taught in
foundation courses in deep learning. Students should be able to Implement the forward
and backward pass. These are already implemented in the Layer class.

4. Advanced deep Learning algorithms (RMS-Prop, Adagrad, etc.)

Adaptive learning algorithms are an active research area in deep learning. The Optimizer
class provided contains an implementation of RMS-Prop and Adagrad. These implemen-
tations could be removed and students asked to implement these learning algorithms.
Furthermore, others such as Adams, Adadelta, etc., are not implemented yet. Their
implementation is a good exercise that will demonstrate grounding in adaptive learning
algorithms.

5. Extending the architecture of the network (advanced)

The current implementation of the architecture needs improvement. One such area is
refactoring the ‘Layer’ class into a base class and deriving sigmoid, tanh, relu and convo-
lution layers from this.
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