
pendsim: Developing, Simulating, and Visualizing
Feedback Controlled Inverted Pendulum Dynamics
Mike Sutherland1 and David A. Copp1

1 Department of Mechanical and Aerospace Engineering, University of California, Irvine
DOI: 10.21105/jose.00168

Software
• Review
• Repository
• Archive

Submitted: 11 January 2022
Published: 04 March 2023

License
Authors of papers retain copy-
right and release the work under
a Creative Commons Attribution
4.0 International License (CC BY
4.0).

Summary

This package is a companion tool for exploring dynamics, control, and machine learn-
ing for the canonical cart-and-pendulum system. It includes a software simulation of
the cart-and-pendulum system, a visualizer tool to create animations of the simulated
system, and sample implementations for controllers and state estimators. The user can
use any platform or the browser to run the pendsim Python package. It gives the user
a plug-and-play sandbox to design and analyze controllers for the inverted pendulum,
and is compatible with Python’s rich landscape of third-party scientific programming and
machine learning libraries.
The package is useful for a wide range of curricula, from introductory mechanics to
graduate-level control theory. The inverted pendulum is a canonical example in control
theory (See, e.g. (Aström & Murray, 2008)). A set of example notebooks provide a
starting point for introductory and graduate-level topics.

Statement of need

Curricula in the study of dynamical systems and control can be quite abstract. When a
student studies the abstract mathematical model of a system they have difficulty seeing
the effects of control and modeling parameters. Because of this, direct experimentation
is a natural way to better understand how these systems evolve over time given different
controllers and parameters.
Physical laboratory setups are expensive, time-consuming, and limited to four or five
students at a time. Virtual experiments are cheap, easy-to-setup, and accomodate hun-
dreds of students at a time. Virtual experiments can augment course content, even for
remote-only instruction. The virtual platform allows students to share their work, run
experiments collaboratively or individually, and develop controllers or investigate system
dynamics in a fast design-test loop.
Instructors can design experiments in pendsim, and subsequently measure any system
parameter or variable, including the animation of the system. The package includes
visualizations and pre-built controllers. The package is a great companion to any control
or dynamical systems course material, in either a virtual, hybrid, or in-person context.

Example Usage

The software is a virtual laboratory. Users create an experiment by specifying a set
of parameters: the pendulum (mass, length, friction, and so on), and the simulation

Sutherland et al., (2023). pendsim: Developing, Simulating, and Visualizing Feedback Controlled Inverted Pendulum Dynamics. Journal of
Open Source Education, 6(61), 168. https://doi.org/10.21105/jose.00168

1

https://doi.org/10.21105/jose.00168
https://github.com/openjournals/jose-reviews/issues/168
https://github.com/EASEL-UCI/pendsim
https://doi.org/10.5281/zenodo.7603937
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/jose.00168

parameters (such as external forces). The user can then design and apply a control policy
in the simulation. Finally, the user can view the results of the simulation. The ability to
rapidly create and run experiments allows for fast design-test loops.

This design-test-visualize sequence also allows instructors to introduce students to new
topics and create interactive assignments that can augment theoretical class discussions
and hardware experiments. Thus, pendsim may be naturally used in engineering courses
related to dynamics and control that are taught in any format, including in-person, hybrid,
and online settings. An example PID Controller Design Assignment notebook is available
to show how students may use pendsim in a course assignment.

The following simple example (Example 1) shows the ease of creating, modeling, and
visualizing a proportional-integral-derivative controller:

Example 1
define simulation parameters
dt, t_final = 0.01, 5.0
def forcing_func(t):

return 10 * np.exp(-(((t - 2.0) / 0.2) ** 2))

define pendulum parameters
pend = sim.Pendulum(

2.0, # Large mass, 2.0 kg
1.0, # Small mass, 1.0 kg
2.0, # length of arm, 2.0 meter
state inputs are stored as numpy arrays:
[x, xdot, theta, thetadot]
initial_state=np.array([0.0, 0.0, 0.1, 0.0]),

)

PID gains
kp, ki, kd = 50.0, 0.0, 5.0
controllers are stored in the controller module.
cont = controller.PID((kp, ki, kd))

create simulation object
simu = sim.Simulation(

timestep, simulation time, and forcing function
dt, t_final, forcing_func,
simulate gaussian noise added to state measurements
noise_scale=np.array([0.05, 0.05, 0.05, 0.05])

)

run simulation with controller and pendulum objects
results = simu.simulate(pend, cont)

create an animation of the results
visu = viz.Visualizer(results, pend)
ani = visu.animate()

Sutherland et al., (2023). pendsim: Developing, Simulating, and Visualizing Feedback Controlled Inverted Pendulum Dynamics. Journal of
Open Source Education, 6(61), 168. https://doi.org/10.21105/jose.00168

2

https://colab.research.google.com/github/EASEL-UCI/pendsim/blob/main/notebooks/PID_controller_design_assignment.ipynb
https://doi.org/10.21105/jose.00168

Figure 1: A still from the animation module. Here, a force pushes to the right (shown in red) while
the controller pushes to the left to stabilize the pendulum (shown in blue).

Rich plots of any system attribute are easy to generate. This example shows the plot in
Figure 2:

Example 2
import matplotlib.pyplot as plt
fig, ax = plt.subplots()

ax.plot(results[("state", "t")])
ax.scatter(
results.index, results[("measured state", "t")].values,
color="black", marker=".",
)

ax.set_ylabel("Angle (Radians)")
ax.set_xlabel("Time (s)")
ax.set_title("Pendulum Angle")
plt.show()

Figure 2: This plot (generated by the code in Example 2) shows the angle of the pendulum over
time as it evolves in simulation. The black dots show the measured angle, while the line shows an
Unscented Kalman Filter estimation of the angle. Such plots are easy to generate from outputs of
the simulation.

Sutherland et al., (2023). pendsim: Developing, Simulating, and Visualizing Feedback Controlled Inverted Pendulum Dynamics. Journal of
Open Source Education, 6(61), 168. https://doi.org/10.21105/jose.00168

3

https://doi.org/10.21105/jose.00168

Package Features

A core pendulum/simulation module. (sim.py)

This simulates the system dynamics and allows for external forces on the pendulum. Users
can specify:

• pendulum parameters (e.g., masses, length, friction, etc.)

• a time period over which to simulate

• an external forcing function (e.g., push)

• noise characteristics

• a timestep for the simulation

• a controller to use, if any

Controllers, Estimators, etc. (controller.py)

Several controller implementations are pre-built. These include:

• Bang Bang (On-Off) controller

• Proportional-Integral-Derivative (PID) controller

• Linear Quadratic Regulator (LQR) controller

• State estimation using an Unscented Kalman Filter (UKF) (implemented with pack-
age filterpy (Labbe, 2021))

• Energy Swing-Up Controller

The user can implement any control policy by creating a new custom controller class.
Users can test new open-ended controller designs. Controllers can dump data into the
simulation results so that intermediate control inputs are accessible to the final results of
the simulation.

Visualization (viz.py):

The simulation results are visualized in viz.py. The ‘matplotlib’ (Hunter, 2007) backend
draws animations of the inverted pendulum and plots from the simulation. The visual-
ization uses the results of the simulation to draw the inverted pendulum, including the
external and control forces applied to it. The animation module allows for the system
to plot real-time simulation data (e.g., data used by the controller) side by side with the
animation.

The results of the simulation are easy to query and plot. This makes investigating the
simulation easy and intuitive.

Sutherland et al., (2023). pendsim: Developing, Simulating, and Visualizing Feedback Controlled Inverted Pendulum Dynamics. Journal of
Open Source Education, 6(61), 168. https://doi.org/10.21105/jose.00168

4

https://rland93.github.io/pendsim/customctl.html
https://doi.org/10.21105/jose.00168

Example Notebooks:

The repository includes several notebooks which show the capabilities of the package.
Example notebooks are hosted on Google Colab:

• Animated Plots

• System Linearization

• PID Tuning

• PID Controller Design Assignment

• Applying a state estimator for better control

• Swing-up by Energy Control

References

Aström, K. J., & Murray, R. M. (2008). Feedback systems. Princeton University Press.
https://doi.org/10.1515/9781400828739

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Labbe, R. (2021). Filterpy. https://github.com/rlabbe/filterpy

Sutherland et al., (2023). pendsim: Developing, Simulating, and Visualizing Feedback Controlled Inverted Pendulum Dynamics. Journal of
Open Source Education, 6(61), 168. https://doi.org/10.21105/jose.00168

5

https://colab.research.google.com/github/rland93/pendsim/blob/master/notebooks/tutorial_plot_inline.ipynb
https://colab.research.google.com/github/rland93/pendsim/blob/master/notebooks/linearization.ipynb
https://colab.research.google.com/github/rland93/pendsim/blob/master/notebooks/PID.ipynb
https://colab.research.google.com/github/EASEL-UCI/pendsim/blob/main/notebooks/PID_controller_design_assignment.ipynb
https://colab.research.google.com/github/rland93/pendsim/blob/master/notebooks/state_estimation.ipynb
https://colab.research.google.com/github/rland93/pendsim/blob/master/notebooks/swingup.ipynb
https://doi.org/10.1515/9781400828739
https://doi.org/10.1109/MCSE.2007.55
https://github.com/rlabbe/filterpy
https://doi.org/10.21105/jose.00168

	Summary
	Statement of need
	Example Usage
	Package Features
	A core pendulum/simulation module. (sim.py)
	Controllers, Estimators, etc. (controller.py)
	Visualization (viz.py):
	Example Notebooks:

	References

