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Summary

Explainability techniques for data-driven predictive models based on artificial intelligence
and machine learning algorithms allow us to better understand the operation of such
systems and help to hold them accountable (Sokol & Flach, 2021a). New transparency
approaches are developed at breakneck speed, enabling us to peek inside these black boxes
and interpret their decisions. Many of these techniques are introduced as monolithic tools,
giving the impression of one-size-fits-all and end-to-end algorithms with limited customis-
ability. Nevertheless, such approaches are often composed of multiple interchangeable
modules that need to be tuned to the problem at hand to produce meaningful explana-
tions (Sokol et al., 2019). This paper introduces a collection of hands-on training materials
– slides, video recordings and Jupyter Notebooks – that provide guidance through the
process of building and evaluating bespoke modular surrogate explainers for tabular data.
These resources cover the three core building blocks of this technique: interpretable rep-
resentation composition, data sampling and explanation generation (Sokol et al., 2019).

Modular Surrogate Explainers

The training materials introduce the concept of modular explainability algorithms using
the example of surrogate explainers for tabular data. This separation of functionally inde-
pendent building blocks allows us to consider the influence of each component, and their
interdependence, on the robustness and faithfulness of the final explainer. To this end, we
review a collection of techniques to evaluate the quality of the modules and their overall
effectiveness. These metrics can guide the parameterisation of the entire explainability
algorithm, providing an opportunity to tune it to the problem at hand. All of these in-
sights demonstrate that while surrogate explainers are model-agnostic and post-hoc – i.e.,
they work with any black box and can be retrofitted into pre-existing predictive models,
thus making them a popular choice for explaining black-box predictions (Ribeiro et al.,
2016) – using off-the-shelf explainability approaches may result in subpar performance for
individual use cases (Rudin, 2019). Therefore, understanding how to build a bespoke sur-
rogate explainer that is suitable for a particular situation is a prerequisite for trustworthy
and meaningful explainability of data-driven systems and their decisions.

Prior to diving into the practicalities of composing surrogate explainers, the training
materials introduce the concept of algorithmic explainability of predictive models and
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discuss the fundamental ideas behind surrogates for text, image and tabular data. This
theoretical overview is followed by a brief presentation of the software used for the hands-
on modules; FAT Forensics1 is an open source Python package designed for inspecting
selected fairness, accountability and transparency aspects of data (and their features),
models and predictions (Sokol et al., 2020, 2022). Having covered the basics, the practical
coding resources focus on the three building blocks of surrogate explainers for tabular data
identified by the bLIMEy – build LIME yourself (Sokol et al., 2019) – meta-algorithm:

• interpretable (data) representation composition;
• data sampling; and
• explanation generation (interpretable feature selection, data sample weighting, sur-

rogate model training and explanation extraction).

These learning modules review some of the interoperable algorithmic components avail-
able at each step, discuss their pros and cons for a range of applications, guide through
their optimal selection strategies and propose suitable evaluation criteria – see Figure 1.
In particular, interpretable representations are built with quartile discretisation and deci-
sion trees (Sokol & Flach, 2020b); data are generated with Gaussian and mixup sampling
(Sokol et al., 2019; Zhang et al., 2018); and explanations are extracted from linear and
tree-based surrogate models (Sokol & Flach, 2020a). Notably, these choices determine the
type, role and quality of the resulting explanations composed for black-box predictions.
Therefore, these hands-on materials illustrate how such interoperable algorithmic building
blocks behave in various scenarios and demonstrate how to use these components to con-
figure robust explainers with well-known properties and failure modes based on first-hand
observations and a collection of quantitative evaluation metrics and validation techniques.
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Figure 1: Overview of surrogate explainers modularity listing components specific to tabular data.

The introduction to algorithmic explainability; the theoretical overview of surrogate ex-
plainers for text, image and tabular data; and the outline of FAT Forensics are presented
in a collection of slides and instructional video recordings. The hands-on materials are
delivered with Jupyter Notebooks that interweave textual guidance, code examples and
informative plots. All the insights learnt throughout the practical exercises enable the
tutees to create robust surrogate explainers for an arbitrary black-box predictive model
built for their own tabular data set. The training resources are designed to appeal and be
accessible to an audience with a wide range of backgrounds and experiences. Active par-
ticipation in the practical part requires basic familiarity with Python programming and
access to a computer connected to the Internet, which enables execution of the Jupyter
Notebooks online without installing any software on a personal machine.

1https://fat-forensics.org/
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These training materials were used to deliver a hands-on tutorial – of the same title –
at the 2020 European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD)2, the recordings of which are available
on YouTube3. Moreover, they inspired a number of interactive sessions at various summer
schools aimed at doctoral students in artificial intelligence and machine learning, as well
as undergraduate lectures, academic presentations and invited talks. The slides, extra
hands-on resources and video recordings of some of these events are available on the FAT
Forensics Events website4. The new teaching materials5 additionally cover surrogates for
image data – focusing on the influence of segmentation granularity and occlusion colour on
the trustworthiness of the resulting explanations (Sokol & Flach, 2020b) – and touch upon
other explainers such as permutation importance (Breiman, 2001), individual conditional
expectation (Goldstein et al., 2015) and partial dependence (Friedman, 2001).

Notably, these sessions propelled the improvement, evolution and expansion of the train-
ing resources. In particular, the programming-focused exercises have been complemented
by no-code Jupyter Notebooks that enable interactive experimentation with the explainers
through intuitive Jupyter Widgets, thus allowing to better engage with the audience in a
limited time. The same strategy has been employed for the slides – by embedding interac-
tive examples based on widgets – to which end they have been built with RISE6. From our
experience, the teaching became much more effective when the ubiquitous PDF slides and
Jupyter Notebook programming exercises were replaced with and/or enriched by formats
supporting seamless interaction with the taught material (in our case achieved through
widgets). This exploration of alternative technologies for building training resources has
also inspired a prototype of a new publishing workflow, where multiple artefacts such as
online documents, slides and computational notebooks can be composed from a unified
collection of source materials (Sokol & Flach, 2021b).

Statement of Need

The training resources described by this paper introduce a novel learning paradigm for
algorithmic explainability of data-driven predictive systems based on artificial intelligence
and machine learning techniques. Instead of treating these tools as end-to-end, monolithic
entities whose configuration is only facilitated through the parameters exposed by their
developers, these educational materials look into their modularity to identify atomic and
functionally interoperable building blocks. By decomposing explainers into their core
elements we can better understand their role and configure them for the application
at hand. Within this purview, such techniques are diagnostic tools that only become
explainers when their properties and interpretation of their outputs are well understood
and designed accordingly. Therefore, to engender trust in data-driven predictive systems,
the employed explainability approaches must be trustworthy themselves in the first place –
the learning objective underlying the interactive coding exercises. The training materials
achieve these goals by supporting the following learning outcomes specifically for surrogate
explainers (which were chosen because of their flexibility and popularity):

• identify self-contained algorithmic components of the explainer and understand their
functions;

• connect these building blocks to the explainability requirements unique to the in-
vestigated predictive system;

• select appropriate algorithmic components and tune them to the problem at hand;
2https://events.fat-forensics.org/2020_ecml-pkdd/
3https://www.youtube.com/playlist?list=PLgdhPOmeUNm0H2XTQECK3wabnDohZURLK
4https://events.fat-forensics.org/
5https://github.com/fat-forensics/resources/
6https://rise.readthedocs.io/
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• evaluate these building blocks (in this specific context) independently and when
joined together to form the final explainer; and

• interpret the resulting explanations in view of the uncovered properties and limita-
tions of the bespoke explainability algorithm.

The modularity and diversity of these training materials – slides, video recordings and
Jupyter Notebooks – allow them to be adapted or directly incorporated into a course on
explainable artificial intelligence and interpretable machine learning, or form the basis of a
range of educational resources such as practical training sessions and conference tutorials.
The module can be taught as is – reusing the slides and computational notebooks – with
either bespoke tuition or by following the prerecorded videos. Alternatively, the narra-
tion, figures and results presented within the notebooks may be shaped into tailor-made
teaching materials. The hands-on resources can also become a standalone case study
supplementing relevant explainability and interpretability courses. The comprehensive
and in-detail presentation of the topic, covering both the underlying theory and practical
aspects, is suitable for and accessible to undergraduate and postgraduate students, re-
searchers as well as engineers and data scientists interested in the subject. This module
fills a gap in educational materials dealing with artificial intelligence and machine learning
transparency by focusing on understanding of the inner workings of these techniques and
the influence of their building blocks on the robustness, veracity and comprehensibility of
explanatory insights into black-box predictive models.
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