
Elektra: universal framework to access configuration
parameters
Markus Raab1

1 TU Wien (TUW)DOI: 10.21105/joss.00044

Software
• Review
• Repository
• Archive

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Today, most software invent their own configuration systems to dynamically load their
configuration files at run-time. Up to now, it was difficult to integrate and specify the
configuration across such applications. Elektra (Raab 2016a) provides a framework to
bridge this gap (Raab 2010). In its essence, Elektra can be thought of a database that
uses standard configuration files to persist data. Furthermore, a simple configuration
specification language can be used to describe the data and its access to it.
Because of its generic nature, we cannot give an exhaustive list of what can be done with
Elektra. The obvious cases, how developers and administrators should use Elektra to
avoid configuration integration issues mentioned earlier, are described in Elektra’s docu-
mentation. But it is ongoing research to find further use cases where these abstractions
are useful. In this paper, we will give three concrete examples where Elektra has value to
the research community.

Context Awareness

Currently, applications sometimes modify configuration values before using them. The
reasons for such modifications can be called context, e.g., the number of CPUs, the current
operating system, or the battery status [raab2016persistent]. The modifications within
applications are problematic because it is not transparent for the user which configuration
values the application actually will use.
We propose to move the logic that is responsible for determining configuration values into
Elektra’s specification language (Raab 2015b) (Raab 2016b) (Raab 2016c). This way, the
user can query the up-to-date configuration values and get identical results to what the
application will see. But even better, users can change the way context is taken into
account easily.
Elektra allows us to intercept unmodified applications (by ‘’hijacking” calls to their config-
uration system) (Raab 2016c). For example, an application calls the C-function getenv()
but actually retrieves a value from Elektra and not from an environment variable. This
way we can make applications context aware that previously were not.

Validation

Developers often do not provide a way to validate configuration files (Raab 2015a). So
administrators are forced to start applications to see if the configuration file is rejected.
We propose to move the validation from the applications to Elektra’s specification lan-
guage (Raab 2016b). Then every modification of the configuration files via Elektra gets

Raab, (2016). Elektra: universal framework to access configuration parameters. Journal of Open Source Software, 1(8), 44,
doi:10.21105/joss.00044

1

https://doi.org/10.21105/joss.00044
https://github.com/openjournals/joss-reviews/issues/44
https://github.com/ElektraInitiative/libelektra
http://dx.doi.org/10.5281/zenodo.200894
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00044


automatically validated. This can be via an editor, a graphical user interface, or a web
interface.
Furthermore, based on the specification language, we can generate valid and invalid con-
figuration files. Such configuration files can be used to test the behavior of applications,
e.g., injecting faulty configuration files to see if applications crash.

Code Generator

Applications today often have hand-written glue code to transform the strings received
from configuration files to the variables used in the application. In Elektra a code genera-
tor (Raab 2015a) allows us to generate this code. Based on the configuration specification,
Elektra provides methods with type-safe access to configuration values.
This simplifies writing new applications (Raab and Puntigam 2014) because we can also
generate documentation and code to parse command-line options. But this technique can
also be used to replace existing hand-written code.

References

Raab, Markus. 2010. “A Modular Approach to Configuration Storage.” Master’s Thesis,
Vienna University of Technology.
———. 2015a. “Safe Management of Software Configuration.” In Proceedings of the
Caise’2015 Doctoral Consortium, 74–82. urn:nbn:de:0074-1415-4: http://ceur-ws.org/Vol-
1415/. http://ceur-ws.org/Vol-1415/CAISE2015DC09.pdf.
———. 2015b. “Sharing Software Configuration via Specified Links and Transformation
Rules.” In Technical Report from Kps 2015. Vol. 18. Vienna University of Technology,
Complang Group.

———. 2016a. “Elektra.” http://www.libelektra.org.
———. 2016b. “Improving System Integration Using a Modular Configuration Specifi-
cation Language.” In Companion Proceedings of the 15th International Conference on
Modularity, 152–57. MODULARITY Companion 2016. New York, NY, USA: ACM.
doi:10.1145/2892664.2892691.

———. 2016c. “Unanticipated Context Awareness for Software Configuration Access
Using the Getenv Api.” In Computer and Information Science, edited by Roger Lee,
41–57. Cham: Springer International Publishing. doi:10.1007/978-3-319-40171-3_4.
Raab, Markus, and Franz Puntigam. 2014. “Program Execution Environments as Con-
textual Values.” In Proceedings of 6th International Workshop on Context-Oriented Pro-
gramming, 8:1–8:6. NY, USA: ACM. http://dx.doi.org/10.1145/2637066.2637074.

Raab, (2016). Elektra: universal framework to access configuration parameters. Journal of Open Source Software, 1(8), 44,
doi:10.21105/joss.00044

2

http://ceur-ws.org/Vol-1415/CAISE2015DC09.pdf
http://www.libelektra.org
https://doi.org/10.1145/2892664.2892691
https://doi.org/10.1007/978-3-319-40171-3_4
http://dx.doi.org/10.1145/2637066.2637074
https://doi.org/10.21105/joss.00044

	Summary
	Context Awareness
	Validation
	Code Generator

	References

