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Summary

How does our brain learn to produce the large, impressive, and flexible array of motor be-
haviors we possess? In recent years, there has been renewed interest in modeling complex
human behaviors such as memory and motor skills using neural networks (Sussillo et al.
2015; Rajan, Harvey, and Tank 2016; Hennequin, Vogels, and Gerstner 2014; Carnevale
et al. 2015; Laje, Buonomano, and Buonomano 2013). However, training these networks
to produce meaningful behavior has proven difficult. Furthermore, the most common
methods are generally not biologically-plausible and rely on information not local to the
synapses of individual neurons as well as instantaneous reward signals (Martens and
Sutskever 2011; Sussillo and Abbott 2009; Song, Yang, and Wang 2016).
The current package is a Matlab implementation of a biologically-plausible training rule
for recurrent neural networks using a delayed and sparse reward signal (Miconi 2016).
On individual trials, input is perturbed randomly at the synapses of individual neurons
and these potential weight changes are accumulated in a Hebbian manner (multiplying
pre- and post-synaptic weights) in an eligibility trace. At the end of each trial, a reward
signal is determined based on the overall performance of the network in achieving the
desired goal, and this reward is compared to the expected reward. The difference be-
tween the observed and expected reward is used in combination with the eligibility trace
to strengthen or weaken corresponding synapses within the network, leading to proper
network performance over time.
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