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Summary

Many scientific and computing problems require doing some calculation on all elements
of some data set. If the calculations can be executed in parallel (i.e. without any com-
munication between calculations), these problems are said to be perfectly parallel. On
computers with multiple processing cores, these tasks can be distributed and executed
in parallel to greatly improve performance. A common paradigm for handling these dis-
tributed computing problems is to use a processing “pool”: the “tasks” (the data) are
passed in bulk to the pool, and the pool handles distributing the tasks to a number of
worker processes when available.
In Python, the built-in multiprocessing package provides a Pool class for exactly this
design case, but only supports distributing the tasks amongst multiple cores of a single
processor. To extend to large cluster computing environments, other protocols are re-
quired, such as the Message Passing Interface (MPI; Forum 1994). schwimmbad provides
new Pool classes for a number of parallel processing environments with a consistent in-
terface. This enables easily switching between local development (e.g., serial processing
or with Python’s built-in multiprocessing) and deployment on a cluster or supercom-
puter (via, e.g., MPI or JobLib). This library supports processing pools with a number
of backends:

• Serial processing: SerialPool
• Python standard-library multiprocessing: MultiPool
• OpenMPI (Gabriel et al. 2004) and mpich2 (Lusk, Doss, and Skjellum 1996) via the

mpi4py package (Dalcín, Paz, and Storti 2005; Dalcín et al. 2008): MPIPool
• joblib: JoblibPool

All pool classes provide a .map() method to distribute tasks to a specified worker function
(or callable), and support specifying a callback function that is executed on the master
process to enable post-processing or caching the results as they are delivered.
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