
schwimmbad: A uniform interface to parallel processing
pools in Python
Adrian M. Price-Whelan1 and Daniel Foreman-Mackey2

1 Lyman Spitzer, Jr. Fellow, Princeton University 2 Sagan Fellow, University of WashingtonDOI: 10.21105/joss.00357

Software
• Review
• Repository
• Archive

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Many scientific and computing problems require doing some calculation on all elements
of some data set. If the calculations can be executed in parallel (i.e. without any com-
munication between calculations), these problems are said to be perfectly parallel. On
computers with multiple processing cores, these tasks can be distributed and executed
in parallel to greatly improve performance. A common paradigm for handling these dis-
tributed computing problems is to use a processing “pool”: the “tasks” (the data) are
passed in bulk to the pool, and the pool handles distributing the tasks to a number of
worker processes when available.
In Python, the built-in multiprocessing package provides a Pool class for exactly this
design case, but only supports distributing the tasks amongst multiple cores of a single
processor. To extend to large cluster computing environments, other protocols are re-
quired, such as the Message Passing Interface (MPI; Forum 1994). schwimmbad provides
new Pool classes for a number of parallel processing environments with a consistent in-
terface. This enables easily switching between local development (e.g., serial processing
or with Python’s built-in multiprocessing) and deployment on a cluster or supercom-
puter (via, e.g., MPI or JobLib). This library supports processing pools with a number
of backends:

• Serial processing: SerialPool
• Python standard-library multiprocessing: MultiPool
• OpenMPI (Gabriel et al. 2004) and mpich2 (Lusk, Doss, and Skjellum 1996) via the

mpi4py package (Dalcín, Paz, and Storti 2005; Dalcín et al. 2008): MPIPool
• joblib: JoblibPool

All pool classes provide a .map() method to distribute tasks to a specified worker function
(or callable), and support specifying a callback function that is executed on the master
process to enable post-processing or caching the results as they are delivered.

References

Dalcín, Lisandro, Rodrigo Paz, and Mario Storti. 2005. “MPI for Python.” Journal of
Parallel and Distributed Computing 65 (9): 1108–15. doi:http://dx.doi.org/10.1016/j.jpdc.2005.03.010.
Dalcín, Lisandro, Rodrigo Paz, Mario Storti, and Jorge D’Elía. 2008. “MPI for Python:
Performance Improvements and Mpi-2 Extensions.” Journal of Parallel and Distributed
Computing 68 (5): 655–62. doi:http://dx.doi.org/10.1016/j.jpdc.2007.09.005.
Forum, Message P. 1994. “MPI: A Message-Passing Interface Standard.” Knoxville, TN,
USA: University of Tennessee.
Gabriel, Edgar, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,

Price-Whelan et al., (2017). schwimmbad: A uniform interface to parallel processing pools in Python. Journal of Open Source Software, 2(17),
357, doi:10.21105/joss.00357

1

https://doi.org/10.21105/joss.00357
https://github.com/openjournals/joss-reviews/issues/357
https://github.com/adrn/schwimmbad
http://dx.doi.org/10.5281/zenodo.885577
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Embarrassingly_parallel
open-mpi.org
https://www.mpich.org/
http://pythonhosted.org/joblib/
https://doi.org/http://dx.doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/http://dx.doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.21105/joss.00357


Jeffrey M. Squyres, Vishal Sahay, et al. 2004. “Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation.” In Proceedings, 11th European Pvm/Mpi
Users’ Group Meeting, 97–104. Budapest, Hungary.
Lusk, Ewing, Nathan Doss, and Anthony Skjellum. 1996. “A High-Performance, Portable
Implementation of the Mpi Message Passing Interface Standard.” Parallel Computing 22:
789–828.

Price-Whelan et al., (2017). schwimmbad: A uniform interface to parallel processing pools in Python. Journal of Open Source Software, 2(17),
357, doi:10.21105/joss.00357

2

https://doi.org/10.21105/joss.00357

	Summary
	References

