
ResumableFunctions: C# sharp style generators for Julia.
Ben Lauwens1

1 Royal Military Academy, Brussels, BelgiumDOI: 10.21105/joss.00400

Software
• Review
• Repository
• Archive

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

C# has a convenient way to create iterators (Microsoft 2017) using the yield return
statement. The package (Lauwens 2017a) provides the same functionality for the Julia
language (Bezanson et al. 2017) by introducing the @resumable and the @yield macros.
These macros can be used to replace the Task switching functions produce and consume
which were deprecated in Julia v0.6. Channels are the preferred way for inter-task com-
munication in julia v0.6+, but their performance is subpar for iterator applications.
The macro @resumable transform a function definition into a finite state-machine, i.e. a
callable type holding the state and references to the internal variables of the function and
a constructor for this new type respecting the method signature of the original function
definition. When calling the new type a modified version of the body of the original
function definition is executed: - a dispatch mechanism is inserted at the start to allow
a non local jump to a label inside the body; - the @yield statement is replaced by a
return statement and a label placeholder as endpoint of a non local jump; - for loops
are transformed in while loops and - try-catch-finally-end expressions are converted
in a sequence of try-catch-end expressions with at the end of the catch part a non local
jump to a label that marks the beginning of the expressions in the finally part. The
two last transformations are needed to overcome the limitations of the non local jump
macros @goto and @label.
Straightforward two-way communication between the caller and the callable type is pos-
sible by calling the callable type with an extra argument. The value of this argument is
passed to the left side of an arg = @yield ret expression.
The iterator interface is implemented so that a @resumable function can be used
transparently.
Benchmarks show that this macro based implementation of semi-coroutines is an order
of magnitude faster than both the original Task switching with produce and consume
and the newer Channel based approach for inter-task communication. A context switch
is more expensive than a function call.
The next generation of process-driven simulations in the discrete-event simulation frame-
work (Lauwens 2017b) is based on this package.

References

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. “Julia:
A Fresh Approach to Numerical Computing.” SIAM Review, no. 59. SIAM: 65–98.
doi:https://doi.org/10.1137/141000671.
Lauwens, Ben. 2017a. “ResumableFunctions: C# Sharp Style Generators A.k.a. Semi-

Lauwens, (2017). ResumableFunctions: C# sharp style generators for Julia. Journal of Open Source Software, 2(18), 400,
doi:10.21105/joss.00400

1

https://doi.org/10.21105/joss.00400
https://github.com/openjournals/joss-reviews/issues/400
https://github.com/BenLauwens/ResumableFunctions.jl.git
https://doi.org/10.5281/zenodo.1039345
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.00400


Coroutines for Julia.” https://github.com/BenLauwens/ResumableFunctions.jl.git.
———. 2017b. “SimJulia: Discrete Event Process Oriented Simulation Framework Writ-
ten in Julia.” https://github.com/BenLauwens/SimJulia.jl.git.
Microsoft. 2017. “Iterators (c#).” https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/concepts/iterators.

Lauwens, (2017). ResumableFunctions: C# sharp style generators for Julia. Journal of Open Source Software, 2(18), 400,
doi:10.21105/joss.00400

2

https://github.com/BenLauwens/ResumableFunctions.jl.git
https://github.com/BenLauwens/SimJulia.jl.git
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://doi.org/10.21105/joss.00400

	Summary
	References

