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Summary

Benchmarking algorithms for computationally hard (multi-criteria) optimization prob-
lems on graphs are usually carried out by running the set of algorithms on a set of test
problems. Typically the test set consists of artificially generated benchmark graphs. Ar-
tificial problems allow for 1) the generation of arbitrary many instances in short time and
2) the generation of problems with different hardness levels or different characteristics of
optimal solutions. E.g., it is well known, that the structure of edge weight combinations
decides on the shape and size of the Pareto-front for multi-criteria minimum spanning
tree (mcMST) problems which in turn may affect performance of algorithms (Bossek and
Grimme 2017; Knowles and Corne 2001).

The R (R Core Team 2017) package grapherator implements different methods for ran-
dom graph generation. The focus is on weighted graphs with one or more weights per
edge. Grapherator thus targets researchers who study single- or multi-criteria optimiza-
tion problems on graphs. Originally, an early predecessor was part of the R package mcMST
(Bossek 2017). As complexity increased, the methods were outsourced into a dedicated
package. In contrast to most graph generation libraries e.g., NetworkX (Hagberg, Schult,
and Swart 2008) for Python, grapherator implements a flexible three-step workflow.

Grapherator workflow

The technical pipeline (see Figure 1) follows a three-step approach: 1) node generation
(e.g., lattice, uniform etc.), 2) edge generation (e.g., Erdos-Renyi (Erdos and Rényi 1959),
Waxman-model (Waxman 1988) etc.) and 3) weight generation (e.g., distance-based, ran-
dom, correlated etc.). Each step may be repeated multiple times with different generator
functions yielding high flexibility (see Figure 2 for some examples). The set of predefined
generator functions can be easily expanded with custom functions.

Support

Bug reports and feature requests are highly appreciated via the GitHub issue tracker
(https://github.com/jakobbossek/grapherator /issues).
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Figure 1: The grapherator workflow
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Figure 2: Example graphs with two weights per edge. Both graph topology and a scatterplot of the
edge weights is shown.
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