The Journal of Open Source Software

DOI: 10.21105/joss.00528

Software

= Review 7
= Repository 7
= Archive &

Submitted: 22 December 2017
Published: 19 February 2018

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

grapherator: A Modular Multi-Step Graph Generator

Jakob Bossek!

1 University of Miinster

Summary

Benchmarking algorithms for computationally hard (multi-criteria) optimization prob-
lems on graphs are usually carried out by running the set of algorithms on a set of test
problems. Typically the test set consists of artificially generated benchmark graphs. Ar-
tificial problems allow for 1) the generation of arbitrary many instances in short time and
2) the generation of problems with different hardness levels or different characteristics of
optimal solutions. E.g., it is well known, that the structure of edge weight combinations
decides on the shape and size of the Pareto-front for multi-criteria minimum spanning
tree (mcMST) problems which in turn may affect performance of algorithms (Bossek and
Grimme 2017; Knowles and Corne 2001).

The R (R Core Team 2017) package grapherator implements different methods for ran-
dom graph generation. The focus is on weighted graphs with one or more weights per
edge. Grapherator thus targets researchers who study single- or multi-criteria optimiza-
tion problems on graphs. Originally, an early predecessor was part of the R package mcMST
(Bossek 2017). As complexity increased, the methods were outsourced into a dedicated
package. In contrast to most graph generation libraries e.g., NetworkX (Hagberg, Schult,
and Swart 2008) for Python, grapherator implements a flexible three-step workflow.

Grapherator workflow

The technical pipeline (see Figure 1) follows a three-step approach: 1) node generation
(e.g., lattice, uniform etc.), 2) edge generation (e.g., Erdos-Renyi (Erdos and Rényi 1959),
Waxman-model (Waxman 1988) etc.) and 3) weight generation (e.g., distance-based, ran-
dom, correlated etc.). Each step may be repeated multiple times with different generator
functions yielding high flexibility (see Figure 2 for some examples). The set of predefined
generator functions can be easily expanded with custom functions.

Support

Bug reports and feature requests are highly appreciated via the GitHub issue tracker
(https://github.com/jakobbossek/grapherator /issues).

References

Bossek, J. 2017. “mcMST: A Toolbox for the Multi-Criteria Minimum Spanning Tree
Problem.” Journal of Open Source Software 2 (17). https://doi.org/10.21105/j0ss.00374.

Bossek, (2018). grapherator: A Modular Multi-Step Graph Generator. Journal of Open Source Software, 3(22), 528. 1
https://doi.org/10.21105/joss.00528

https://doi.org/10.21105/joss.00528
https://github.com/openjournals/joss-reviews/issues/528
https://github.com/jakobbossek/grapherator
http://dx.doi.org/10.5281/zenodo.1175943
http://creativecommons.org/licenses/by/4.0/
https://github.com/jakobbossek/grapherator
https://github.com/jakobbossek/grapherator/issues
https://doi.org/10.21105/joss.00374
https://doi.org/10.21105/joss.00528

The Journal of Open Source Software

4 N\

. » Graph skeleton
g = graph(...)

. J

4)

Node generation 1.
g =addNodes(g, ...)

\\ J

()
Edge generation
g =addEdges(g, ...)

\
4 N\

‘ < Weight generation 1.%
g =addWeights(g, ...)
J

.

Figure 1: The grapherator workflow

Graph topology Edge weights Graph topology Edge weights
#nodes: 25, #edges: 300, #clusters: 0 sweignis: 2 nodies: 300, dedges: 1131, #clusters: 10 seignis: 2
Node type(s): UNG, edge type(s): CEG Weight type(s): DIST, RND Node type(s): LHSNG, UNG, edge type(s): CLGIEG, CLSTEG, DEG Weignt ype(s): -0.70-COR

100,

2 H H
10
=
"
x W, X W
Graph topology Edge weights Graph topology Edge weights
#nodes: 100, #edges: 180, #custers: O veighis: 2 #nodes: 163, decges: 366, #clusters: 3 #weights: 2
Node type(s): GNG, edge fype(s): GEG Weight ype(s): CONC Node type(s): LHSNG, UNG, edge type(s): CLWEG, CLSTEG, STEG Weight ype(s): DIST, RND

100 100

Figure 2: Example graphs with two weights per edge. Both graph topology and a scatterplot of the
edge weights is shown.

Bossek, (2018). grapherator: A Modular Multi-Step Graph Generator. Journal of Open Source Software, 3(22), 528. 2
https://doi.org/10.21105/joss.00528

https://doi.org/10.21105/joss.00528

The Journal of Open Source Software

Bossek, J., and C. Grimme. 2017. “A Pareto-Beneficial Sub-Tree Mutation for the Multi-
Criteria Minimum Spanning Tree Problem.” In Proceedings of the 2017 IEEE Symposium
Series on Computational Intelligence, 3280-7. Honolulu, Hawaii, USA.

Erdos, P., and A. Rényi. 1959. “On random graphs, 1.” Publicationes Mathematicae
(Debrecen) 6:290-97.

Hagberg, A. A., D. A. Schult, and P. J. Swart. 2008. “Exploring Network Structure,
Dynamics, and Function Using NetworkX.” In Proceedings of the 7th Python in Science
Conference (Scipy2008), 11-15. Pasadena, CA USA.

Knowles, J. D., and D. W. Corne. 2001. “Benchmark Problem Generators and Results for
the Multiobjective Degree-Constrained Minimum Spanning Tree Problem.” In Proceed-
ings of the 3rd Annual Conference on Genetic and Evolutionary Computation, 424-31.
GECCO’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Waxman, B. M. 1988. “Routing of Multipoint Connections.” IEEE Journal on Selected
Areas in Communications 6 (9):1617-22. https://doi.org/10.1109/49.12889.

Bossek, (2018). grapherator: A Modular Multi-Step Graph Generator. Journal of Open Source Software, 3(22), 528. 3
https://doi.org/10.21105/joss.00528

https://www.R-project.org/
https://doi.org/10.1109/49.12889
https://doi.org/10.21105/joss.00528

	Summary
	Grapherator workflow
	Support

	References

