
Bitstream – Binary Data for Humans
Sébastien Boisgérault1

1 MINES ParisTech, PSL Research University, Centre for roboticsDOI: 10.21105/joss.00541

Software
• Review
• Repository
• Archive

Submitted: 16 November 2017
Published: 31 January 2018

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Audiophiles are familiar with multiple digital audio file formats (WAV, MP3, AAC, ALAC,
FLAC, etc.) and generally know that this multiplicity is justified by different trade-
offs and features (in terms of quality, compression rate, complexity, for example). The
same logic drives the research for new binary formats in many contexts. Such research
goes through an experimental phase where the development of codecs – the software
that transforms back and forth the original data into binary data – is required for any
theoretical design. Any tool which can simplify and speed up the prototyping of such
codecs therefore improves significantly this iterative process.
In this context, Bitstream (Boisgérault 2017a) provides a Python library with a simple,
high-level and customizable programming interface to manage binary data. Many classic
but menial tasks usually required are automatically taken care of under the hood.
The cornerstone of the library is the use of the “bitstream” abstraction. The “stream”
part means that we use a simple model where one can only write data at one end of
the binary structure and read data at the other end, in the same order. The “bit” part
means that the library can work seamlessly with individual bits and not merely bytes,
a feature frequently required by lossless data compression schemes. Bitstream supports
out of the box data types from Python and NumPy: ASCII strings, (arrays of) booleans,
fixed-size integers, floating-point numbers, etc. One can also define and register custom
(even parametrized) types and their binary representation, and then use them with the
same interface. Since the library supports creation and restoration of stream snapshots,
it’s possible to go beyond the stream model when necessary; this “time machine” scheme is
more than adequate for many use cases (header lookahead, decoders with strong exception
safety, etc.). And since bitstream is a Python C extension, it is fast enough for many
applications.
The design of bitstream was initially driven by the development of a “Digital Audio Cod-
ing” graduate course at MINES ParisTech University (MINES ParisTech, PSL University
2013; Boisgérault 2017b). In this context, which mixes information theory, binary for-
mats and numeric data, the bitstream abstraction works really well. A simple interface
was required to replace pseudo-code with actual code, bridging the gap between lectures
and lab sessions. Since none of the Python libraries we were aware of (Python 2.7 Stan-
dard Library 2017b, 2017a; Griffiths 2014; Schnell 2013, etc.) supported the feature set
described above, bitstream was born.
The library later proved to be useful to prototype and document quickly classic and
experimental binary formats and codecs. It was integrated as a component of the Python
audio package and used by audio coding applications, such as audio.wave, a reader and
writer of WAVE files (see e.g. Kabal 2017) integrated with NumPy and audio.shrink,
an experimental lossless codec inspired by SHORTEN (Robinson 1994).

Boisgérault, (2018). Bitstream – Binary Data for Humans. Journal of Open Source Software, 3(21), 541. https://doi.org/10.21105/joss.00541 1

https://doi.org/10.21105/joss.00541
https://github.com/openjournals/joss-reviews/issues/541
https://github.com/boisgera/bitstream
http://dx.doi.org/10.5281/zenodo.1158626
http://creativecommons.org/licenses/by/4.0/
https://github.com/boisgera/bitstream
https://pypi.python.org/pypi/audio
https://github.com/boisgera/audio.wave
https://github.com/boisgera/audio.shrink
https://doi.org/10.21105/joss.00541


References

Boisgérault, Sébastien. 2017a. “Bitstream: Binary Data for Humans.” Github. https:
//github.com/boisgera/bitstream.
———. 2017b. “Digital Audio Coding.” Eul.Ink. http://eul.ink/audio/.
Griffiths, Scott. 2014. “Bitstring: A Python Module to Help You Manage Your Bits.”
Github. http://scott-griffiths.github.io/bitstring/.
Kabal, Peter. 2017. “Audio File Format Specification.” MMSP Lab, ECE, McGill Uni-
versity.
MINES ParisTech, PSL University. 2013. “Digital Audio Coding.” MINES Paris-
Tech Graduate School Course Catalog. https://sgs.mines-paristech.fr/prod/sgs/ensmp/
catalog/course/detail.php?code=S1916&year=3a&lang=EN.
Python 2.7 Standard Library. 2017a. “Array — Efficient Arrays of Numeric Values.”
https://docs.python.org/2/library/array.html.
———. 2017b. “Struct — Interpret Strings as Packed Binary Data.” https://docs.python.
org/2/library/struct.html.
Robinson, Tony. 1994. “SHORTEN: Simple Lossless and Near-Lossless Waveform Com-
pression.” http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/robinson_tr156.pdf.
Schnell, Ilan. 2013. “Bitarray: Efficient Array of Booleans for Python.” Github. https:
//github.com/ilanschnell/bitarray.

Boisgérault, (2018). Bitstream – Binary Data for Humans. Journal of Open Source Software, 3(21), 541. https://doi.org/10.21105/joss.00541 2

https://github.com/boisgera/bitstream
https://github.com/boisgera/bitstream
http://eul.ink/audio/
http://scott-griffiths.github.io/bitstring/
https://sgs.mines-paristech.fr/prod/sgs/ensmp/catalog/course/detail.php?code=S1916&year=3a&lang=EN
https://sgs.mines-paristech.fr/prod/sgs/ensmp/catalog/course/detail.php?code=S1916&year=3a&lang=EN
https://docs.python.org/2/library/array.html
https://docs.python.org/2/library/struct.html
https://docs.python.org/2/library/struct.html
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/robinson_tr156.pdf
https://github.com/ilanschnell/bitarray
https://github.com/ilanschnell/bitarray
https://doi.org/10.21105/joss.00541

	Summary
	References

