
ChemPy: A package useful for chemistry written in
Python
Björn Dahlgren1

1 KTH Royal Institute of Technology, Stockholm, SwedenDOI: 10.21105/joss.00565

Software
• Review
• Repository
• Archive

Submitted: 26 January 2018
Published: 04 April 2018

Licence
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

ChemPy is a Python library that provides functions and classes for solving chemistry
related problems. It includes classes for representing substances, reactions, and systems
of reactions. It also includes well established formulae from physical chemistry, as well
as analytic solutions to some differential equations commonly encountered in chemical
kinetics. Last, but not the least, it collects parametrizations of chemical properties of
substances from the literature.
Its intended audience is primarily researchers and engineers who need to perform mod-
elling work. But since the intermediate representations of, e.g., ODE systems and systems
of non-linear equations are available symbolically, ChemPy may also be used in an edu-
cational setting.
Substances are represented by a class that holds their names and, optionally, information
on their composition, weight, charge etc., as well as how to pretty print them using
LaTeX, HTML and unicode. Both the composition and stylistic representations can be
deduced by ChemPy’s parser. Reactions are represented through their stoichiometry
and thermodynamic/kinetic parameters. If the stoichiometry of a reaction is unknown,
ChemPy can balance it based on the composition of the substances. The classes for
representing systems of reactions provide methods to analyze, e.g., if there are disjoint
sets of reactions, or if all are connected in the same network. The classes also offer a series
of checks performed at initialization, ensuring balanced reactions with sane coefficients
and consistent units.
Systems of reactions can be represented as graphs, tables, systems of ordinary differential
equations (chemical kinetics) or non-linear equations (chemical equilibria). The latter two
forms can be solved numerically using pyodesys (Dahlgren 2018b) and pyneqsys (Dahlgren
2018a) respectively.
Thanks to the use of SymPy (Meurer et al. 2017), stoichiometry problems with a single
unique solution can be solved analytically, as well as under-determined systems, where
the answer then contains a free parameter. The under-determined formulation can also be
expressed in a canoncial form with coefficients minimzed using PuLP (Mitchell, OSullivan,
and Dunning 2011; Lougee-Heimer 2003). In fact, most equations and parametrizations in
ChemPy support—in addition to NumPy arrays (Walt, Colbert, and Varoquaux 2011)—
also symbolic input, as well as arrays with explicit units. The latter allows ChemPy to
check that, e.g., the correct dimensionality with respect to reaction order is used for rate
constants.

Features

• Pretty printing of chemical formulae and reaction sets.

Dahlgren, (2018). ChemPy: A package useful for chemistry written in Python. Journal of Open Source Software, 3(24), 565.
https://doi.org/10.21105/joss.00565

1

https://doi.org/10.21105/joss.00565
https://github.com/openjournals/joss-reviews/issues/565
https://github.com/bjodah/chempy
http://dx.doi.org/10.5281/zenodo.1212469
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00565


• Interactive JavaScript enabled widgets in the Jupyter notebook (Thomas et al.
2016).

• Parsing of chemical formulae, reactions and systems thereof.
• Functions for expressing systems of reactions as ordinary differential equations.
• Functions for expressing systems of equilibria as non-linear equations (including

multi-phase systems).
• Analytic solutions for a selection of kinetic problems.

References

Dahlgren, Björn. 2018a. “Pyneqsys: Solve Symbolically Defined Systems of Non-Linear
Equations Numerically.” The Journal of Open Source Software 3 (21). The Open Jour-
nal:531. https://doi.org/10.21105/joss.00531.
———. 2018b. “Pyodesys: Straightforward Numerical Integration of ODE Systems
from Python.” The Journal of Open Source Software 3 (21). The Open Journal:490.
https://doi.org/10.21105/joss.00490.
Lougee-Heimer, Robin. 2003. “The Common Optimization Interface for Operations Re-
search: Promoting Open-Source Software in the Operations Research Community.” IBM
Journal of Research and Development 47 (1). IBM:57–66.
Meurer, Aaron, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kir-
pichev, Matthew Rocklin, AMiT Kumar, et al. 2017. “SymPy: Symbolic Computing
in Python.” PeerJ Computer Science 3 (January). PeerJ:e103. https://doi.org/10.7717/
peerj-cs.103.
Mitchell, Stuart, Michael OSullivan, and Iain Dunning. 2011. “PuLP: A Linear Pro-
gramming Toolkit for Python. The University of Auckland, Auckland, New Zealand.”
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf.
Thomas, Kluyver, Ragan-Kelley Benjamin, Pérez Fernando, Granger Brian, Bussonnier
Matthias, Frederic Jonathan, Kelley Kyle, Hamrick Jessica, Grout Jason, and et al. Cor-
lay Sylvain. 2016. “Jupyter Notebooks—a Publishing Format for Reproducible Compu-
tational Workflows.” IOS Press, 87–90. https://doi.org/10.3233/978-1-61499-649-1-87.
Walt, Stéfan van der, S Chris Colbert, and Gaël Varoquaux. 2011. “The NumPy Array:
A Structure for Efficient Numerical Computation.” Computing in Science & Engineering
13 (2). Institute of Electrical; Electronics Engineers (IEEE):22–30. https://doi.org/10.
1109/mcse.2011.37.

Dahlgren, (2018). ChemPy: A package useful for chemistry written in Python. Journal of Open Source Software, 3(24), 565.
https://doi.org/10.21105/joss.00565

2

https://doi.org/10.21105/joss.00531
https://doi.org/10.21105/joss.00490
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.21105/joss.00565

	Summary
	Features
	References

