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Summary

ChemPy is a Python library that provides functions and classes for solving chemistry
related problems. It includes classes for representing substances, reactions, and systems
of reactions. It also includes well established formulae from physical chemistry, as well
as analytic solutions to some differential equations commonly encountered in chemical
kinetics. Last, but not the least, it collects parametrizations of chemical properties of
substances from the literature.
Its intended audience is primarily researchers and engineers who need to perform mod-
elling work. But since the intermediate representations of, e.g., ODE systems and systems
of non-linear equations are available symbolically, ChemPy may also be used in an edu-
cational setting.
Substances are represented by a class that holds their names and, optionally, information
on their composition, weight, charge etc., as well as how to pretty print them using
LaTeX, HTML and unicode. Both the composition and stylistic representations can be
deduced by ChemPy’s parser. Reactions are represented through their stoichiometry
and thermodynamic/kinetic parameters. If the stoichiometry of a reaction is unknown,
ChemPy can balance it based on the composition of the substances. The classes for
representing systems of reactions provide methods to analyze, e.g., if there are disjoint
sets of reactions, or if all are connected in the same network. The classes also offer a series
of checks performed at initialization, ensuring balanced reactions with sane coefficients
and consistent units.
Systems of reactions can be represented as graphs, tables, systems of ordinary differential
equations (chemical kinetics) or non-linear equations (chemical equilibria). The latter two
forms can be solved numerically using pyodesys (Dahlgren 2018b) and pyneqsys (Dahlgren
2018a) respectively.
Thanks to the use of SymPy (Meurer et al. 2017), stoichiometry problems with a single
unique solution can be solved analytically, as well as under-determined systems, where
the answer then contains a free parameter. The under-determined formulation can also be
expressed in a canoncial form with coefficients minimzed using PuLP (Mitchell, OSullivan,
and Dunning 2011; Lougee-Heimer 2003). In fact, most equations and parametrizations in
ChemPy support—in addition to NumPy arrays (Walt, Colbert, and Varoquaux 2011)—
also symbolic input, as well as arrays with explicit units. The latter allows ChemPy to
check that, e.g., the correct dimensionality with respect to reaction order is used for rate
constants.

Features

• Pretty printing of chemical formulae and reaction sets.
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• Interactive JavaScript enabled widgets in the Jupyter notebook (Thomas et al.
2016).

• Parsing of chemical formulae, reactions and systems thereof.
• Functions for expressing systems of reactions as ordinary differential equations.
• Functions for expressing systems of equilibria as non-linear equations (including

multi-phase systems).
• Analytic solutions for a selection of kinetic problems.
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