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Summary

An additional electron (i.e. a charge carrier) in a material applies a polarisation field. In
a polar material (one where the ions of the lattice have different charge), this results in a
large coupling into the lattice motion. Small distortions in the lattice can be described in
terms of a harmonic restoring force, and thereby a harmonic quasi-particle of vibration
termed a phonon. Electron-phonon coupling provides a scattering mechanism by which
momentum (kinetic-energy) of an electron is dissipated. These scattering processes limit
charge-carrier mobility in materials. Being able to predict charge-carrier mobility helps
the computational design of new technological materials. Many new materials of potential
utility and interest are polar. These include oxides used as battery anodes and transpar-
ent conductors for electronic displays; and chalcogenides and halides indicated for light
emission (displays, lighting) and absorption (photovoltaic solar cells).

In a polar material the dielectric electron-phonon coupling dominates the electronic scat-
tering. Unusually, this scattering process can be modelled without any empirical param-
eters, and so the temperature-dependent absolute-mobility of a polar material can be
calculated.

This package is an implementation in the Julia programming language of solving the
Feynman (Feynman, 1955) variational path-integral solution to the Frohlich (Frohlich,
1952) Hamiltonian specifying the polaron problem. The Frohlich Hamiltonian is very
simple. Electrons are treated at the effective-mass (quadratic dispersion relationship)
level, and the vibrational response of the material as a single effective-frequency harmonic
mode. Finite-temperature (free) energies of Osaka (Osaka, 1959) are used, as tabulated in
the modern presentation of Hellwarth et al. (R. W. Hellwarth & Biaggio, 1999). Hellwarth
et al. also provides a rigorous method to calculate an effective frequency.

The physical system is specified by four parameters. 1) bare-band effective-mass; 2)
high-frequency and 3) zero-frequency dielectric constants, and 4) an effective dielectric
phonon frequency. These are most easily calculated by electronic structure calculations.
Components 3 and 4 are dependent on the lattice response, and can be derived from
calculation of the infrared (dielectric) properties of the harmonic phonons.

The Feynman polaron model integrates through the infinite quantum field of these (as
specified) lattice vibrations. The method is variational, and consists of an optimisation
of the finite-temperature (free) energies.

Having solved for the finite temperature polaron state, the codes can then calculate various
parameters of interest for device physics. Most notably polaron mobilities in the original
FHIP (Feynman, Hellwarth, Iddings, & Platzman, 1962) asymtotic limit, the Kadanoff
(Kadanoff, 1963) Boltzmann formulation and the most recent Hellwarth et al. (R. W.
Hellwarth & Biaggio, 1999) explicit contour integral forms. The size and nature of the
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polaron state is also described, most of which was previously investigated by Schultz
(Schultz, 1959).

These codes were developed for and enabled a recent publication by Frost (Frost, 2017),
which provided calculated temperature-dependent mobilities and polaron configurations
for the halide perovskite family of semiconductors.

In providing robust codes to calculate the polaron state, this work enables calculation of
further parameters such as the nature of polaron scattering, frequency-dependent mobility
and polaron optical absorption.
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