
Nostril: A nonsense string evaluator written in Python
Michael Hucka1

1 Department of Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, CA 91125, USADOI: 10.21105/joss.00596

Software
• Review
• Repository
• Archive

Submitted: 06 February 2018
Published: 11 May 2018

Licence
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

Nostril (Nonsense String Evaluator) is a Python 3 module that can infer whether a given
word or text string is likely to be nonsense or meaningful text. A “meaningful” string of
characters is one constructed from real or real-looking English words or fragments of real
words (even if the words are runtogetherlikethis). The main use case for Nostril is to decide
whether short strings returned by source code mining methods are likely to be program
identifiers (of classes, functions, variables, etc.), or random or other non-identifier strings.
Nostril is easy to use. It provides a Python function named nonsense(); this function
takes a single text string as an argument and returns a Boolean value as a result. Here is
an example of its use. The following code,

from nostril import nonsense
for s in ['bunchofwords', 'xywinlist', 'faiwtlwexu', 'asfgtqwafazfy']:

if nonsense(s):
print("{} is nonsense".format(s))

else:
print("{} is real".format(s))

produces the following output:
bunchofwords is real
xywinlist is real
faiwtlwexu is nonsense
asfgtqwafazfy is nonsense

Nostril also includes a command-line program named nostril; it will evaluate strings
provided on the command line or in a file, and is useful for experimenting with Nostril or
using it in command-oriented workflows.

The need for detecting nonsense

A number of research efforts have investigated extracting and analyzing textual informa-
tion contained in software artifacts (e.g., Dit et al. 2011; Linstead et al. 2009). However,
source code files can contain meaningless text, such as random text used as markers or
test cases, and code extraction methods can also sometimes make mistakes and produce
garbled text. When used in processing pipelines without human intervention, it is often
important to include a data cleaning step before passing tokens extracted from source
code to subsequent analysis or machine learning algorithms. Thus, a basic (and often
unmentioned) step is to filter out nonsense tokens.
Discerning real identifiers from nonsense is a surprisingly difficult problem, because pro-
gram identifiers often consist of words, acronyms and word fragments jammed together
(e.g., ioFlXFndrInfo). The resulting strings can challenge even humans. Nostril uses

Hucka, (2018). Nostril: A nonsense string evaluator written in Python. Journal of Open Source Software, 3(25), 596.
https://doi.org/10.21105/joss.00596

1

https://doi.org/10.21105/joss.00596
https://github.com/openjournals/joss-reviews/issues/596
https://github.com/casics/nostril
http://dx.doi.org/10.22002/D1.935
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00596


a combination of (1) a prefilter that detects simple positive and negative cases using
heuristic rules and (2) a custom TF-IDF (Manning, Raghavan, and Schütze 2009) scoring
scheme that uses letter 4-grams as features. The software includes a precomputed table of
n-gram weights derived by training the system on a large set of strings constructed from
concatenated American English words, real text corpora, and other inputs. Parameter
values were optimized using the evolutionary algorithm NSGA-II (Deb et al. 2000).
By default, Nostril is tuned to reduce false positives – it is more likely to say something is
not gibberish when it really might be. This bias is motivated by Nostril’s original purpose
of filtering source code identifiers for machine-learning applications, where false positives
would cause real identifiers to be filtered out and potentially-useful features to be missed.
However, the bias and other parameters (and the table of n-grams) can also be retrained
if applications require it.
Nostril is reasonably fast: once the package is loaded, a string evaluation takes 30–50
microseconds on average on a 4 Ghz Apple macOS computer. Nostril is accurate: it
achieves 99.76% on the the Ludiso identifier oracle (Binkley et al. 2013) and 91.70% on
a test set of 1,000,000 machine-generated random strings.

Acknowledgments

This material is based upon work supported by the National Science Foundation under
Grant Number 1533792. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References

Binkley, David, Dawn Lawrie, Lori Pollock, Emily Hill, and K Vijay-Shanker. 2013. “A
Dataset for Evaluating Identifier Splitters.” In Proceedings of the 10th Working Conference
on Mining Software Repositories, 401–4. IEEE Press. http://dl.acm.org/citation.cfm?id=
2487085.2487158.
Deb, Kalyanmoy, Samir Agrawal, Amrit Pratap, and T Meyarivan. 2000. “A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II.”
In Parallel Problem Solving from Nature PPSN VI, 849–58. Springer. https://doi.org/10.
1007/3-540-45356-3_83.
Dit, B, L Guerrouj, D Poshyvanyk, and G Antoniol. 2011. “Can Better Identifier Splitting
Techniques Help Feature Location?” In 2011 IEEE 19th International Conference on
Program Comprehension, 11–20. https://doi.org/10.1109/ICPC.2011.47.
Linstead, Erik, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and
Pierre Baldi. 2009. “Sourcerer: Mining and Searching Internet-Scale Software
Repositories.” Data Mining and Knowledge Discovery 18 (2):300–336. https:
//doi.org/10.1007/s10618-008-0118-x.
Manning, Christopher D, Prabhakar Raghavan, and Hinrich Schütze. 2009. Introduction
to Information Retrieval. [Online edition]. Cambridge University Press. https://doi.org/
10.1017/CBO9780511809071.

Hucka, (2018). Nostril: A nonsense string evaluator written in Python. Journal of Open Source Software, 3(25), 596.
https://doi.org/10.21105/joss.00596

2

https://nsf.gov
http://dl.acm.org/citation.cfm?id=2487085.2487158
http://dl.acm.org/citation.cfm?id=2487085.2487158
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/ICPC.2011.47
https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.21105/joss.00596

	Summary
	The need for detecting nonsense
	Acknowledgments
	References

