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Summary

Optim provides a range of optimization capabilities written in the Julia programming
language (Bezanson et al. 2017). Our aim is to enable researchers, users, and other
Julia packages to solve optimization problems without writing such algorithms themselves.
The package supports optimization on manifolds, functions of complex numbers, and
input types such as arbitrary precision vectors and matrices. We have implemented
routines for derivative free, first-order, and second-order optimization methods. The user
can provide derivatives themselves, or request that they are calculated using automatic
differentiation or finite difference methods. The main focus of the package has currently
been on unconstrained optimization, however, box-constrained optimization is supported,
and a more comprehensive support for constraints is underway.
Similar to Optim, the C library NLopt (Johnson 2008) contains a collection of nonlinear
optimization routines. In Python, scipy.optimize supports many of the same algorithms
as Optim does, and Pymanopt (Townsend, Niklas, and Weichwald 2016) is a toolbox for
manifold optimization. Within the Julia community, the packages BlackBoxOptim.jl and
Optimize.jl provide optimization capabilities focusing on derivative-free and large-scale
smooth problems respectively. The packages Convex.jl and JuMP.jl (Dunning, Huchette,
and Lubin 2017) define modelling languages for which users can formulate optimization
problems. In contrast to the previously mentioned optimization codes, Convex and JuMP
work as abstraction layers between the user and solvers from a other packages.

Optimization routines

As of version 0.14, the following optimization routines are available.
• Second-order methods

– Newton
– Newton with trust region
– Hessian-vector with trust region

• First-order methods
– BFGS
– L-BFGS (with linear preconditioning)
– Conjugate gradient (with linear preconditioning)
– Gradient descent (with linear preconditioning)

• Acceleration methods
– Nonlinear GMRES
– Objective acceleration

• Derivative-free methods
– Nelder–Mead
– Simulated annealing
– Particle swarm

• Interval bound univariate methods
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– Brent’s method
– Golden-section search

The derivative based methods use line searches to assist convergence. Multiple line search
algorithms are available, including interpolating backtracking and methods that aim to
satisfy the Wolfe conditions.

Usage in research and industry

The optimization routines in this package have been used in both industrial and academic
contexts. For example, parts of the internal work in the company Ternary Intelligence
Inc. (Paramonov 2017) rely on the package. Notably, an upcoming book on optimization
(Kochenderfer and Wheeler Forthcoming, 2018) uses Optim for its examples. Optim has
been used for a wide range of applications in academic research, including optimal con-
trol (Riseth, Dewynne, and Farmer 2017; Riseth 2017a), parameter estimation (Riseth
and Taylor-King 2017; Rackauckas and Nie 2017; and Dony, He, and Stumpf 2018), quan-
tum physics (Damle, Levitt, and Lin 2018), crystalline modelling (Chen and Ortner 2017;
Braun, Buze, and Ortner 2017), and the large-scale astronomical cataloguing project Ce-
leste (Regier et al. 2015; Regier et al. 2016). A new acceleration scheme for optimization
(Riseth 2017b), and a preconditioning scheme for geometry optimisation (Packwood et al.
2016) have also been tested within the Optim framework.
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