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Galore simplifies and automates the process of simulating photoelectron spectra from ab
initio calculations. This replaces the tedious process of extracting and interpolating cross-
sectional weights from reference data and generates tabulated data or publication-ready
plots as needed. The broadening tools may also be used to obtain realistic simulated
spectra from a theoretical set of discrete lines (e.g. infrared or Raman spectroscopy).

Photoelectron spectroscopy

Photoelectron spectroscopy (PES) is a family of methods used to characterise the chemical
nature and electronic structure of materials. PES is based on the photoelectric effect,
which was discovered by Hertz.1 It was explored extensively by Rutherford and colleagues2

and within a few years researchers including de Broglie3 and Robinson4 were using the
technique to measure electron binding energies through the relationship

Ek = hν − EB.

Photons with energies hν ranging from 5 eV up to 12 keV eject electrons (referred to as
“photoelectrons”) from the occupied orbitals of a sample. The kinetic energy Ek of each
photoelectron therefore depends on its binding energy EB. The names of various PES
methods refer to the photon energy range used:

• ultraviolet photoelectron spectroscopy (UPS): 5–100 eV
• X-ray photoelectron spectroscopy (XPS): 0.3–2 keV
• hard X-ray photoelectron spectroscopy (HAXPES, HE-PES, HXPS, HX-PES):

above 2 keV
These methods generate spectra that are directly related to the electronic density of states
(DOS), a distribution which is routinely calculated in ab initio materials chemistry. When
comparing the computed DOS with a PES measurement, it is often possible to identify
general peak agreement simply by reversing the energy scale (i.e. replacing negative or-
bital energies with positive binding energies), applying a little broadening, and shifting
the energy values to account for different references. This approach has been applied
succesfully where peak positions are of interest.5,6 Broadening is generally applied by
convolution with a Gaussian and/or Lorentzian function: intrinsic lifetime broadening
causes a Lorentzian energy distribution of the photoelectrons, while instrumental factors,
including the width of the X-ray source and analyser resolution, give rise to a Gaussian
line shape. Franck–Condon phonon broadening is caused by relaxation of atomic posi-
tions in response to creation of a photohole, as well as thermal population of vibrationally
excited states before photoionisation, and gives around 0.8 eV Gaussian broadening in
metal oxides.7–9
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Figure 1: Procedure (left to right) for simulated photoelectron spectrum from ab initio DOS

Photoemission spectra for the same material will vary depending on the radiation source
used. The probabilities of the underlying photoionisation events are based on the radia-
tion and orbital energies, as well as the shape of the orbital. In order to account for this it
is necessary to apply weighting to states according to their photoionisation cross-sections.
This is accomplished by projecting the full DOS onto contributions from atomic s, p, d,
f orbitals (PDOS), as is done routinely in analysis of ab initio calculations. It is then
assumed that the contributions of these orbital-projected states to the total photoelec-
tron spectrum will be proportional to the photoionisation cross-sections of corresponding
orbitals in free atoms. (This is the Gelius model.10–12) The free atom cross-sections have
been computed by several methods and are available as reference data (e.g. 13). Imple-
mented with ad-hoc scripts and spreadsheets, this method has already been used in many
academic studies.14–18

Known limitations and improvements

The Gelius model is based on photoelectrons with short wavelengths, such that the pho-
toinionisation matrix elements are dominated by regions of space close to the atomic
nuclei.10–12 This model is expected to break down at longer wavelengths, and in the case
of low-energy UPS it is likely that significant scattering effects would be neglected.
Asymmetry corrections may be applied to the photoionisation cross-sections to account for
the polarisation of sources and angular acceptance range of electron detectors. This is espe-
cially relevant for HAXPES measurements where the experimental geometry may be delib-
erately changed in order to manipulate the spectrum and expose different contributions.19

A best-practice approach is to integrate the relevant equations over a range of angles de-
pending on the equipment geometry.20 Currently this data is not included in Galore,
but users are able to include corrected cross-sections from a JSON-formatted data file if
available.
At high photon energies, it has been observed that intensity changes in oxides do not
correlate with photon energy as predicted by the available tabulated data; in particular
the intensity of O-2p states in CdO, PbO2 and In2O3 seem to vary more linearly than
predicted.20

Further reading

For further information about PES there are some helpful reviews in the academic litera-
ture, including Refs 21, 22 and 23.
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Figure 2: Schematic example of misleading peak intensities due to overlap

Vibrational spectroscopy (IR and Raman)

In infrared (IR) spectroscopy, low-energy photons are absorbed corresponding to the en-
ergies of lattice vibrations and an absorption spectrum is obtained. In a highly-crystalline
system, symmetry selection rules limit the absorption activity to a small number of pos-
sible excitations with zero crystal momentum (“Gamma-point phonons”). In Raman
spectroscopy another optical method is used to observe lattice vibrations and different
selection rules apply; again, the resulting spectrum corresponds to a limited selection of
Gamma-point movements.
It is possible to predict the frequencies and intensities of these vibrational modes by
performing ab initio lattice dynamics calculations. Usually these will be performed within
density-functional theory, either using variations of density-functional perturbation theory
(based on the work of Gonze24) or the frozen-phonon (“direct”) method (see Refs 25,
26). When the underlying set of vibrational frequencies and mode intensities has been
calculated it is typical to broaden the data by convolution with a Gaussian–Lorentzian
function.27,28 This is necessary to correctly intepret the effect of overlapping peaks; for
example, Figure 2 shows a case in which a group of peaks with low intensities combine to
form a large peak in the broadened spectrum.

Galore

Galore provides a command-line tool and Python API to import data and resample it
to a dense, regular X-Y series. This mesh can then be convolved with Gaussian and
Lorentzian functions to yield a smooth output, in the form of a plot or data file. Numpy
functions are used for data manipulation and convolution on a finite grid and Matplotlib
is used for plotting.29,30 As well as simple tabular data files, the electronic DOS or PDOS
may be imported directly from the output of the VASP or GPAW codes.
The Gaussian and Lorentzian functions employed have the forms:

y = exp

(
−(f − f0)

2

2c2

)
where c =

γ

2
√
2 log 2

and
y =

0.5γ

π(f − f0)2 + (0.5γ)2

where f is the x-axis value, f0 is the mid-point, γ is the full-width-half-maximum of the
peak.
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Figure 3: Cross-validation error of HAXPES data fitting over full energy range across all elements
and orbitals

Cross-sectional weights are included for some standard energy values (He(II) UPS and Al
k-alpha) from tabulated ab initio calculations.13 Users may provide their own weighting
values in the same human-readable JSON file format. Higher-energy (HAXPES) spectra
may be simulated using cross-sections from fitted data over an energy range 1-1500 keV.
Tabulated data31 was fitted to an order-8 polynomial on a log-log scale, and coefficients for
each element and orbital shape are stored in a database file. The fitting error is generally
below 1%, with outliers in the region of 2–3%. The order-8 fit was selected based on
cross-validation in order to avoid over-fitting (Figure 3).
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