
approxposterior: Approximate Posterior Distributions in
Python
David P. Fleming1 and Jake VanderPlas1

1 University of WashingtonDOI: 10.21105/joss.00781

Software
• Review
• Repository
• Archive

Submitted: 24 April 2018
Published: 04 September 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

This package is a Python implementation of “Bayesian Active Learning for Posterior
Estimation” by (Kandasamy, Schneider, & Poczos, 2015) and “Adaptive Gaussian process
approximation for Bayesian inference with expensive likelihood functions” (Wang & Li,
2017). These algorithms allows the user to compute approximate posterior probability
distributions using computationally expensive forward models by training a Gaussian
Process (GP) surrogate for the likelihood evaluation. The algorithms leverage the inherent
uncertainty in the GP’s predictions to identify high-likelihood regions in parameter space
where the GP is uncertain. The algorithms then run the forward model at these points
to compute their likelihood and re-trains the GP to maximize the GP’s predictive ability
while minimizing the number of forward model evaluations. Please read (Kandasamy et
al., 2015) and (Wang & Li, 2017) for in-depth descriptions of the respective algorithms.
approxposterior is under active development on GitHub and community participation is
encouraged. The code is available on GitHub (Fleming, 2018).
The following figure is a simple demonstration of approxposterior produced using a Jupyter
Notebook provided with the code on GitHub. In the left panel, we show the true posterior
probability distribution computed by Markov Chain Monte Carlo (MCMC) compared
against the result of approxposterior. The two distributions are in excellent agreement.
In the right panel, we estimate how the performance of approxposterior compares against
MCMC by tracking the number of forward model evaluations required for both methods
to converge using the fiducial parameters given in (Wang & Li, 2017) and by tracking the
computational time required for all parts of the approxposterior algorithm, such as training
the GP. Since the (Wang & Li, 2017) forward model is analytic and hence requires little
computational effort, we estimate computational times by adopting a range of forward
model runtimes, from 10 microseconds to 10,000 seconds. For MCMC, the (Wang &
Li, 2017) example requires 400,000 iterations to converge, so we can estimate how long
MCMC would take to finish for a given forward model runtime by multiplying the number
of iterations by the runtime since the forward model is evaluated each iteration. For
approxposterior, we adopt a similar procedure, but also add the forward model runtimes
for building the GP training set, the time required to train the GP, and the time required
to derive the approximate posterior distribution.
In terms of approxposterior performance, we see two regimes: for very quick forward
models, the GP training time dominates performance as the GP predictions take little
time, about 30 microseconds. For slow forward models, the runtime is dominated by
evaluating the forward model to generate the training set for the GP. In this regime,
approxposterior is several orders of magnitude faster than MCMC.
Left: Joint posterior probability distribution of the two model parameters from the (Wang
& Li, 2017) example. The black density map denotes the true distribution while the red
contours denote the approximate distribution derived using approxposterior. The two
distributions are in excellent agreement. Right: Total computational time required to

Fleming et al., (2018). approxposterior: Approximate Posterior Distributions in Python. Journal of Open Source Software, 3(29), 781.
https://doi.org/10.21105/joss.00781

1

https://doi.org/10.21105/joss.00781
https://github.com/openjournals/joss-reviews/issues/781
https://github.com/dflemin3/approxposterior
https://doi.org/10.5281/zenodo.1408178
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00781


Figure 1: Left: Joint posterior probability distribution of the two model parameters from the Wang
and Li (2017) example. The black density map denotes the true distribution while the red contours
denote the approximate distribution derived using approxposterior. The two distributions are in
excellent agreement. Right: Total computational time required to compute the posterior probability
distribution of the model parameters from the Wang and Li (2017) example as a function of forward
model evaluation time. The MCMC method (blue) runs the forward model for each MCMC iteration,
while the orange curve was derived using the approxposterior BAPE implementation.

compute the posterior probability distribution of the model parameters from the (Wang
& Li, 2017) example as a function of forward model evaluation time. The MCMC method
(blue) runs the forward model for each MCMC iteration, while the orange curve was
derived using the approxposterior BAPE implementation.

Acknowledgements

DPF was supported by NASA Headquarters under the NASA Earth and Space Science
Fellowship Program - Grant 80NSSC17K0482. This work is supported in part by an NSF
IGERT grant DGE-1258485.

References

Fleming, D. P. (2018). Approxposterior on github. Retrieved April 24, 2018, from https:
//github.com/dflemin3/approxposterior
Kandasamy, K., Schneider, J., & Poczos, B. (2015). Bayesian active learning for posterior
estimation. In International Joint Conference on Artificial Intelligence.
Wang, H., & Li, J. (2017). Adaptive Gaussian process approximation for Bayesian
inference with expensive likelihood functions. ArXiv e-prints. Retrieved from http:
//arxiv.org/abs/1703.09930

Fleming et al., (2018). approxposterior: Approximate Posterior Distributions in Python. Journal of Open Source Software, 3(29), 781.
https://doi.org/10.21105/joss.00781

2

https://github.com/dflemin3/approxposterior
https://github.com/dflemin3/approxposterior
http://arxiv.org/abs/1703.09930
http://arxiv.org/abs/1703.09930
https://doi.org/10.21105/joss.00781

	Summary
	Acknowledgements
	References

