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Summary

Software that processes real-world data or that models a physical system must have some
way of managing units. This might be as simple as the convention that all floating point
numbers are understood to be in the same physical unit system (for example, the SI
MKS units system). While simple approaches like this do work in practice, they also are
fraught with possible error, both by programmers modifying the code who unintentionally
misinterpret the units, and by users of the software who must take care to supply data in
the correct units or who need to infer the units of data returned by the software. Famously,
NASA lost contact with the Mars Climate Orbiter spacecraft after it crash-landed on the
surface of Mars due to the use of English Imperial units rather than metric units in the
spacecraft control software (Board, 1999).
The unyt library is designed both to aid quick calculations at an interactive Python
prompt and to be tightly integrated into a larger Python application or library. The
top-level unyt namespace ships with a large number of predefined units and physical
constants to aid setting up quick calculations without needing to look up unit data or
the value of a physical constant. Using the unyt library as an interactive calculation aid
only requires knowledge of basic Python syntax and awareness of a few of the methods
of the unyt_array class — for example, the unyt_array.to() method to convert data
to a different unit. As the complexity of the usage increases, unyt provides a number
of optional features to aid these cases, including custom unit registries containing both
predefined physical units as well as user-defined units, built-in output to disk via the
pickle protocol and to HDF5 files using the h5py library (Collette, 2013), and round-trip
converters for unit objects defined by other popular Python unit libraries.
Physical units in the unyt class are defined in terms of the dimensions of the unit, a
string representation, and a floating point scaling to the MKS unit system. Rather than
implementing algebra for unit expressions, we rely on the SymPy symbolic algebra library
(Meurer et al., 2017) to handle symbolic algebraic manipulation. The unyt.Unit object
can represent arbitrary units formed out of base dimensions in the SI unit system: time,
length, mass, temperature, luminance, and electric current. We currently treat units
such as mol with the seventh SI base dimension, amount of substance, as dimensionless,
although we are open to changing this based on feedback from users. The unyt library
supports forming quantities defined in other unit systems — in particular CGS Gaussian
units common in astrophysics as well as geometrized “natural” units common in relativistic
calculations. In addition, unyt ships with a number of other useful predefined unit systems
including imperial units; Planck units; a unit system for calculations in the solar system;
and a “galactic” unit system based on the solar mass, kiloparsecs, and Myr, a convention
common in galactic astronomy.
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In addition to the unyt.Unit class, unyt also provides a two subclasses of the NumPy
(Oliphant, 2006) ndarray (Walt, Colbert, & Varoquaux, 2011), unyt.unyt_array and
unyt.unyt_quantity to represent arrays and scalars with units attached, respectively.
The unyt library also provides a unyt.UnitRegistry class to allow custom systems of
units, for example to track the internal unit system used in a simulation. These sub-
classes are tightly integrated with the NumPy ufunc system, which ensures that algebraic
calculations that include data with units automatically check to make sure the units are
consistent, and allow automatic converting of the final answer of a calculation into a
convenient unit.
We direct readers interested in usage examples and a guide for integrating unyt into
an existing Python application or workflow to the unyt documentation hosted at http:
//unyt.readthedocs.io/en/latest/.

Comparison with Pint and astropy.units

The scientific Python ecosystem has a long history of efforts to develop a library to han-
dle unit conversions and enforce unit consistency. For a relatively recent review of these
efforts, see (Bekolay, 2013). While we won’t exhaustively cover extant Python libraries
for handling units in this paper, we will focus on Pint (Grecco, 2018) and astropy.units
(The Astropy Collaboration et al., 2018), which both provide a robust implementation
of an array container with units attached and are commonly used in research software
projects. At time of writing a GitHub search for import astropy.units returns ap-
proximately 10,500 results and a search for import pint returns approximately 1,500
results.
While unyt provides functionality that overlaps with astropy.units and Pint, there
are important differences which we elaborate on below. In addition, it is worth noting
that all three codebases had origins at roughly the same time period. Pint initially
began development in 2012 according to the git repository logs. Likewise astropy.units
began development in 2012 and was released as part of astropy 0.2 in 2013, although
the initial implementation was adapted from the pynbody library (Pontzen et al., 2013),
which started its units implementation in 2010 according to the git repository logs. In
the case of unyt, it originated via the dimensionful library (Stark, 2012) in 2012. Later,
dimensionful was elaborated on and improved to become yt.units, the unit system for
the yt library (Turk et al., 2011) at a yt developer workshop in 2013 and was subsequently
released as part of yt 3.0 in 2014. One of the design goals for the yt unit system was
the ability to dynamically define “code” units (e.g. units internal to data loaded by yt) as
well as units that depend on details of the dataset — in particular cosmological comoving
units and the “little h” factor, used to parameterize the Hubble constant in cosmology
calculations (Croton, 2013). For cosmology simulations in particular, comparing data with
different unit systems can be tricky because one might want to use data from multiple
outputs in a time series, with each output having a different mapping from internal units
to physical units. This despite the fact that each output in the time series represents
the same physical system and common workflows involve combining data from multiple
outputs. This requirement to manage complex custom units and interoperate between
custom unit systems drove the yt community to independently develop a custom unit
system solution. We have decided to repackage and improve yt.units in the form of
unyt to both make it easier to work on and improve the unit system and encourage use
of the unit system for scientific Python users who do not want to install a heavy-weight
dependency like yt.
Below we present a table comparing unyt with astropy.units and Pint. Estimates for
lines of code in the library were generated using the cloc tool (Danial, 2018); blank and
comment lines are excluded from the estimate. Test coverage was estimated using the
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coveralls output for Pint and astropy.units and using the codecov.io output for
unyt.

Library unyt astropy.units Pint

Lines of code 5128 10163 8908
Lines of code excluding tests 3195 5504 4499
Test Coverage 99.91% 93.63% 77.44%

We offer lines of code as a very rough estimate for the “hackability” of the codebase. In
general, smaller codebases with higher test coverage have fewer defects (Gopinath, Jensen,
& Groce, 2014; Koru, Zhang, & Liu, 2007; Lipow, 1982). This comparison is somewhat
unfair in favor of unyt in that astropy.units only depends on NumPy and Pint has no
dependencies, while unyt depends on both SymPy and NumPy. Much of the reduction
in the size of the unyt library can be attributed to offloading the handling of algebra to
SymPy rather than needing to implement the algebra of unit symbols directly in unyt. For
potential users who are wary of adding SymPy as a dependency, that might argue in favor
of using Pint in favor of unyt.

astropy.units

The astropy.units subpackage provides a PrefixUnit class, a Quantity class that rep-
resents both scalar and array data with attached units, and a large number of predefined
unit symbols. The preferred way to create Quantity instances is via multiplication with
a PrefixUnit instance. Similar to unyt, the Quantity class is implemented via a sub-
class of the NumPy ndarray class. Indeed, in many ways the everyday usage patterns of
astropy.units and unyt are similar, although unyt is not quite a drop-in replacement
for astropy.units as there are some API differences. The main functional difference
between astropy.units and unyt is that astropy.units is a subpackage of the larger
astropy package. This means that depending on astropy.units requires installing a
large collection of astronomically focused software included in the astropy package, in-
cluding a substantial amount of compiled C code. This presents a barrier to usage for
potential users of astropy.units who are not astronomers or do not need the observa-
tional astronomy capabilities provided by astropy.

Pint

The Pint package provides a different API for accessing units compared with unyt and
astropy.units. Rather than making units immediately importable from the Pint names-
pace, Pint instead requires users to instantiate a UnitRegistry instance (unrelated to
the unyt.UnitRegistry class), which in turn has Unit instances as attributes. Just like
with unyt and astropy.units, creating a Quantity instance requires multiplying an ar-
ray or scalar by a Unit instance. Exposing the UnitRegistry directly to all users like
this does force users of the library to think about which system of units they are working
with, which may be beneficial in some cases, however it also means that users have a bit
of extra cognitive overhead they need to deal with every time they use Pint.
In addition, the Quantity class provided by Pint is not a subclass of NumPy’s ndarray.
Instead, it is a wrapper around an internal ndarray buffer. This simplifies the implemen-
tation of Pint by avoiding the somewhat arcane process for creating an ndarray subclass,
although the Pint Quantity class must also be careful to emulate the full NumPy ndarray
API so that it can be a drop-in replacement for ndarray.
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Figure 1: A benchmark comparing the ratio of the time to apply units to lists and NumPy ndarray
instances to the time to interpret the same list or ndarray to an ndarray. This ratio, Tpackage/Tnumpy,
corresponds to the overhead of converting data to work with one of the three packages. Values
close to unity correspond to zero or negligible overhead, while values larger than unity correspond
to measurable overhead. Optimally all values would be near unity. In practice, applying units to
small arrays incurs substantial overhead. Each test is shown for three different sizes of input data,
including inputs with size 3, 1,000, and 1,000,000. The black lines at the top of the bars indicate
the sample standard deviation. The Tnumpy time is calculated by benchmarking the time to perform
np.asarray(data) where data is either a list or an ndarray.
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Figure 2: A benchmark comparing the time to square an array and to take the square root of an
array. See Figure 1 for a detailed explanation of the plot style.

Finally, in comparing the output of our benchmarks of Pint, astropy.units, and unyt,
we found that in-place operations making use of a NumPy ufunc will unexpectedly strip
units in Pint. For example, if a and b are Pint Quantity instances, np.add(a, b,
out=out)) will operate on a and b as if neither have units attached. Interestingly, without
the out keyword, Pint does get the correct answer, so it is possible that this is a bug in
Pint, and we have reported it as such upstream (see https://github.com/hgrecco/pint/
issues/644).

Performance Comparison

Checking units will always add some overhead over using hard-coded unit conversion
factors. Thus a library that is entrusted with checking units in an application should
incur the minimum possible overhead to avoid triggering performance regressions after
integrating unit checking into an application. Optimally, a unit library will add zero
overhead regardless of the size of the array. In practice that is not the case for any of
the three libraries under consideration, and there is a minimum array size above which
the overhead of doing a mathematical operation exceeds the overhead of checking units.
It is thus worth benchmarking unit libraries in a fair manner, comparing with the same
operation implemented using plain NumPy.
Here we present such a set of benchmarks. We made use of the perf (Stinner, 2018)
Python benchmarking tool, which not only provides facilities for establishing the sta-
tistical significance of a benchmark run, but also can tune a linux system to turn off
operating system and hardware features like CPU throttling that might introduce vari-
ance in a benchmark. We made use of a Dell Latitude E7270 laptop equipped with an
Intel i5-6300U CPU clocked at 2.4 GHz. The testing environment was based on Python
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Figure 3: A benchmark comparing the time to perform various binary arithmetic operations on
input operans that have different but dimensionallty compatible units. See Figure 1 for a detailed
explanation of the plot style.

3.6.3 and had NumPy 1.14.2, sympy 1.1.1, fastcache 1.0.2, Astropy 3.0.1, and
Pint 0.8.1 installed. fastcache (Brady, 2017) is an optional dependency of SymPy
that provides an optimized LRU cache implemented in C that can substantially speed up
SymPy. The system was instrumented using perf system tune to turn off CPU features
that might interfere with stable benchmarks. We did not make any boot-time Linux
kernel parameter changes.
For each of the benchmarks we show the ratio of the time to perform an operation with
one of unyt, Pint, and astopy.units, Tpackage, to the time it takes for NumPy to perform
the equivalent operation, Tnumpy. For example, for the comparison of the performance
of np.add(a, b) where a and b have different units with the same dimension, the cor-
responding benchmark to generate Tnumpy would use the code np.add(a, c*b) where a
and b would be ndarray instances and c would be the floating point conversion factor
between the units of a and b. Much of the time in Tpackage relative to Tnumpy is spent in
the respective packages calculating the appropriate conversion factor c. Thus the compar-
isons below depict very directly the overhead for using a unit library over an equivalent
operation that uses hard-coded unit-conversion factors.
In some cases when the operands of an operation have different dimensionally compatible
units, using a unit library will produce a result faster than a pure-numpy implementation.
In cases where this happens, the resulting Tpackage/Tnumpy measurement will come out
less than unity. As an example, consider the operation of one milligram multiplied by 3
kilograms. In this case one could write down the answer as e.g. 3000 mg, 0.003 kg, or 3
kg*g. In the former two cases, one of the operands needs to be scaled by a floating point
conversion factor to ensure that both operands have the same unit before the pure-numpy
implementation can actually evaluate the result, since each array can only have one unit.
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Figure 4: A benchmark comparing the time to perform various binary arithmetic operations on input
operands that have the same units. See Figure 1 for a detailed explanation of the plot style.

In the latter case the conversion factor is implicitly handled by the unit metadata. Note
that this effect will only happen if the operands of an operation have different units. If
the units are the same there is no need to calculate a conversion factor to convert the
operands to the same unit system, so the pure-numpy operation avoids the extra cost
that a unit library avoids in all cases.

Applying units to data

In Figure 1 we plot the overhead for applying units to data, showing both Python lists
and NumPy ndarray instances as the input to apply data to. Since all three libraries
eventually convert input data to a NumPy ndarray, the comparison with array inputs
more explicitly shows the overhead for just applying units to data. When applying units to
a list, all three libraries as well as NumPy need to first copy the contents of the list into a
NumPy array or a subclass of ndarray. This explains why the overhead is systematically
lower when starting with a list.
In all cases, unyt either is fastest by a statistically significant margin, or ties with astropy.
Even for large input arrays, Pint still has statistically significant overhead, while both
unyt and astropy.units have negligible overhead once the input array size reaches 106

elements.

Unary arithmetic operations

Expressions involving powers of data with units, including integer and fractional powers,
are very common in the physical sciences. It is therefore very important for a library that
handles units to be able to track this case in a performant way. In Figure 2 we present a
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Figure 5: A benchmark comparing the overhead for computing various NumPy ufunc operations.
The operands of all binary ufuncs have the same units. See Figure 1 for a detailed explanation of
the plot style.
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benchmark comparing Pint, unyt, and astropy.units for the squaring and square root
operation. In all cases, unyt has the lowest overhead, with Pint coming in second, and
astropy.units trailing. Note that the x-axis is plotted on a log scale, so astropy is as
much as 4 times slower than unyt for these operations.

Binary arithmetic operations

Binary operations form the core of arithmetic. It is vital for a library that handles unit
manipulation to both transparently convert units when necessary and to ensure that
expressions involving quantities with units are dimensionally consistent. In Figure 3 and
4 we present benchmarks for binary arithmetic expressions, both with input data that
has the same units and with input data with different units but the same dimensions.
In most cases, unyt has less overhead than both astropy and Pint, although there are
a few anomalies that are worth explaining in more detail. For comparison operations,
Pint exhibits a slowdown even on large input arrays. This is not present for other binary
operations, so it is possible that this overhead might be eliminated with a code change in
Pint.
For multiplication on large arrays, all three libraries have measured overhead of ∼ 0.5
than that of the “equivalent” Numpy operation. See the discussion in the “Performance
Comparison” section above for why this happens, but briefly, in all three libraries there
is no need to multiply the result of a multiplication operation by an additional constant
to ensure the result has a well-defined unit, while a pure NumPy implementation would
need to multiply the result by a constant to ensure both operands of the operation are in
the same units.
For division, both Pint and astropy.units exhibit the same behavior as for multipli-
cation, and for similar reasons: the result of the division operation is output with units
given by the ratio of the input units. On the other hand, unyt will automatically cancel
the dimensionally compatible units in the ratio and return a result with dimensionless
units. To make that concrete, in astropy and Pint, the result of (4*g) / (2*kg) is 2
g/kg while unyt would report .002.

NumPy ufunc performance

Lastly, in Figures 5 and 6, we present benchmarks of NumPy ufunc operations. A NumPy
ufunc is a fast C implementation of a basic mathematical operation. This includes arith-
metic operators as well as trigonometric and special functions. By using a ufunc directly,
one bypasses the Python object protocol and short-circuits directly to the low-level NumPy
math kernels. We show both directly using the NumPy ufunc operators (Figure 5) as
well as using the same operators with a pre-allocated output array to benchmark in-place
operations.
As for the other benchmarks, unyt tends to have the lowest amount of overhead, although
there are some significant exceptions. For np.power, Pint has the lowest overhead, except
for very large input arrays, where the overhead for all three libraries is negligible. On the
other hand, for np.sqrt, np.equal, np.add, and np.subtract, Pint still has statistically
significant overhead for large input arrays. Finally, for the in-place ufunc comparison,
Pint has the lowest overhead for all operations. However, as discussed above, this is
because of a bug in Pint which causes the library to ignore units when calling a ufunc
with the out keyword set.
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Figure 6: The same as Figure 5, but with in-place ufunc operations. See Figure 1 for a detailed
explanation of the plot style.

Conclusions

In this paper we present the unyt library, giving background on the reasons for its ex-
istence and some historical context for its origin. We also present a set of benchmarks
for common arithmetic operations, comparing the performance of unyt with Pint and
astropy.units. In general, we find that unyt either outperforms or matches the perfor-
mance astropy.units and Pint, depending on the operation and size of the input data.
We also demonstrate that the unyt library constitutes a smaller codebase with higher test
coverage than both Pint and astropy.units.
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