The Journal of Open Source Software

DOI: 10.21105/joss.00820

Software

= Review &7
= Repository &
= Archive @

Submitted: 26 June 2018
Published: 25 November 2018

License

Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

WEdiff: A Python and C++ package for automatic
differentiation

Christopher T. DeGroot!

1 Department of Mechanical and Materials Engineering, Western University, London, ON, Canada

Summary

The need to calculate derivatives occurs frequently in the development of codes that do
numerical computations. A common example is codes that solve ordinary or partial dif-
ferential differential equations, where differentiation may be required for linearization or
for determining the sensitivity of the solution to input parameters. There are a wide va-
riety of methods available to calculate numerical derivatives, including finite differences.
Although finite differences can be useful, they are prone to various errors including trun-
cation error (when the difference between the function values is too large) and cancellation
error (when the difference between the function values is too small) (Griewank & Walther,
2008). Automatic differentiation is a technique that is able to calculate derivatives with
machine accuracy by systematically propagating derivatives through the code using the
chain rule of calculus. Essentially, the algorithm is viewed simply as a large number of
differentiable operations on data, i.e., the composition of the functions fy, f1, ..., fn, for
which the derivative with respect to the first function value (which may be a constant) is:

afn_ 8fn afn—lu %%

dfo Ofn10fno 0f18f

The chain rule, expressed in the equation above, can be evaluated in either forward or
backwards order. One method for propagating derivatives is source code transformation,
where the base code is parsed and a secondary code is produced (Bischof, Khademi, Mauer,
& Carle, 1996; Giering & Kaminski, 1998; Hascoet & Pascual, 2013). This method,
however, is mainly suitable for procedural programming languages. Another method is
based on operator overloading where a class is implemented to hold both the computed
value and the accumulated derivative, and implements overloaded operators to propagate
the derivatives forwards through the code (Griewank & Walther, 2008; Jemcov, 2009;
Jemcov & Mathur, 2004). This method is suitable for object-oriented languages, and just
requires that classes and functions be templated to accept the new data type. It is also
able to compute derivatives with respect to arbitrary variables, requiring minimal code
changes to implement derivative calculations within an existing code.

WEdiff implements forward-mode automatic differentiation using a class called FwdDiff
which stores both the numerical value and accumulated derivative. All standard mathe-
matical operators and functions are implemented for this type. The code is implemented
in C++ and can be used in a straightforward manner in the development of other C++
codes. It also includes Python wrappers generated using SWIG (“SWIG (Simplified
Wrapper and Interface Generator),” 2018), enabling it to be used in the development of
Python scripts as well.

WEdiff has been designed to be used by researchers in any area of study that involves nu-
merical computations where derivatives are required. As an example, it has recently been

DeGroot, (2018). WEdiff: A Python and C++ package for automatic differentiation. Journal of Open Source Software, 3(31), 820. https: 1

//doi.org/10.21105/joss.00820

https://doi.org/10.21105/joss.00820
https://github.com/openjournals/joss-reviews/issues/820
https://bitbucket.org/cdegroot/wediff
https://doi.org/10.5281/zenodo.1495614
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00820
https://doi.org/10.21105/joss.00820

SS

The Journal of Open Source Software

used to determine the sensitivity of temperature fields to the thermophysical properties of
solids using a finite-volume-based numerical code (C. DeGroot, 2018). This work can eas-
ily be extended to include finite-volume-based solutions of more complex fluid mechanics
problems. WEdiff could also be used in many other areas, such as solutions of ordinary
differential equations, where the derivative of the solution could be obtained with respect
to any input parameters. This would enable both optimization and uncertainty analy-
sis to be conducted. The source code for WEdiff, along with test cases, examples, and
documentation, can be found on BitBucket (C. T. DeGroot, 2018).

Acknowledgements

This work is supported by a research grant from the Natural Sciences and Engineering
Research Council of Canada (NSERC) through the Discovery Grants program.

References

Bischof, C., Khademi, P., Mauer, A., & Carle, A. (1996). Adifor 2.0: Automatic
Differentiation of Fortran 77 Programs. IEFE Comput. Sci. FEng., 3(3), 18-32.
doi:10.1109/99.537089

DeGroot, C. (2018). Automatic Differentiation of a Finite-Volume-Based Transient Heat

Conduction Code for Sensitivity Analysis. Numer. Heat Transf. Part B Fundam.
doi:10.1080/10407790.2018.1486648

DeGroot, C. T. (2018). WEdiff: Western Engineering Automatic Differentiation Library.
https://bitbucket.org/cdegroot /wediff.

Giering, R., & Kaminski, T. (1998). Recipes for Adjoint Code Construction. ACM Trans.
Math. Softw., 24(4), 437-474. doi:10.1145/293686.293695

Griewank, A., & Walther, A. (2008). Fwaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation (2nd ed.). Philadelphia, USA: STAM.
doi:10.1137/1.9780898717761

Hascoet, L., & Pascual, V. (2013). The Tapenade Automatic Differentiation Tool:
Principles, Model, and Specification. ACM Trans. Math. Softw., 39(3), 20:1-20:43.
doi:10.1145/2450153.2450158

Jemcov, A. (2009). Arithmetic Parameterization of General Purpose CFD Code. In
Proceedings of the 17th annual conference of the CFD society of canada. Ottawa, Canada.

Jemcov, A., & Mathur, S. (2004). Algorithmic Differentiation of General Purpose CFD
Code : Implementation and Verification. FEur. Congr. Comput. Methods Appl. Sci.
Eng., 1-19.

SWIG (Simplified Wrapper and Interface Generator). (2018). http://swig.org.

DeGroot, (2018). WEdiff: A Python and C++ package for automatic differentiation. Journal of Open Source Software, 3(31), 820. https: 2

//doi.org/10.21105/joss.00820

https://doi.org/10.1109/99.537089
https://doi.org/10.1080/10407790.2018.1486648
https://bitbucket.org/cdegroot/wediff
https://doi.org/10.1145/293686.293695
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1145/2450153.2450158
http://swig.org
https://doi.org/10.21105/joss.00820
https://doi.org/10.21105/joss.00820

	Summary
	Acknowledgements
	References

