
The Glasgow Fortran Source-to-Source Compiler
Wim Vanderbauwhede1

1 University of Glasgow School of Computing Science

DOI: 10.21105/joss.00865

Software
• Review
• Repository
• Archive

Submitted: 23 July 2018
Published: 12 December 2018

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

The Glasgow Fortran Source-to-Source Compiler is a source-to-source compiler that auto-
matically refactors legacy FORTRAN77 code into modern and maintainable Fortran-95
code that is ready for acceleration with OpenCL, OpenMP, OpenACC etc. This is the
main purpose of the compiler. It also allows to translate code into C and the OpenCL
kernel language to further assist with acceleration of code, and is an essential component
of our toolchain for automatic parallelization of Fortran code using OpenCL (Vander-
bauwhede & Davidson, 2018).

The compiler is entirely self-contained and written in Perl.

The compiler is intended to work on typical scientific simulation code, but it works on
the complete NIST FORTRAN78 test suite.

Our compiler successfully generates refactored code for all tests, and the refactored code
compiles correctly and passes all tests (2887 tests in total). The tests are available in the
repository under tests/NIST_F78_test_suite.

Furthermore, we tested the compiler on four real-word physics simulation models:

• The 2-D Shallow Water example from the book “Ocean Modelling for Begin-
ners: Using Open-Source Software” by Jochen Kämpf. (188 loc), available in
tests/ShallowWater2D.

• The Large Eddy Simulator, a high-resolution turbulent flow model (1,391 loc)
• The shallow water component of Gmodel, an ocean model (1,533 loc)
• Flexpart-WRF, a version of the Flexpart particle dispersion simulator that takes

input data from WRF (13,829 loc)
• The Linear Baroclinic Model, an atmospheric climate model (39,336 loc)

Each of these models has a different coding style, specifically in terms of the use of
common blocks, include files, etc that affect the refactoring process. All of these codes
are refactored fully automatically without changes to the original code and build and run
correctly. The performance of the original and refactored code is the same in all cases.

References

Vanderbauwhede, W., & Davidson, G. (2018). Domain-specific acceleration and auto-
parallelization of legacy scientific code in fortran 77 using source-to-source compilation.
Computers & Fluids. doi:10.1016/j.compfluid.2018.06.005

Vanderbauwhede, (2018). The Glasgow Fortran Source-to-Source Compiler. Journal of Open Source Software, 3(32), 865. https://doi.org/10.
21105/joss.00865

1

https://doi.org/10.21105/joss.00865
https://github.com/openjournals/joss-reviews/issues/865
https://github.com/wimvanderbauwhede/RefactorF4Acc
https://doi.org/10.5281/zenodo.2222337
http://creativecommons.org/licenses/by/4.0/
http://www.itl.nist.gov/div897/ctg/fortran_form.htm
https://github.com/wimvanderbauwhede/LES
http://www.sciamachy-validation.org/research/CKO/gmodel.html
https://github.com/sajinh/flx_wrf2
http://ccsr.aori.u-tokyo.ac.jp/~hiro/sub/lbm.html
https://doi.org/10.1016/j.compfluid.2018.06.005
https://doi.org/10.21105/joss.00865
https://doi.org/10.21105/joss.00865

	Summary
	References

