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Summary

Many physical systems in the world involve interactions between different entities and can
be represented as graphs. Understanding the structure and analyzing properties of graphs
are hence paramount to developing insights into the physical systems. Graph embedding,
which aims to represent a graph in a low dimensional vector space, takes a step in this
direction. The embeddings can be used for various tasks on graphs such as visualization,
clustering, classification and prediction.
GEM is a Python package which offers a general framework for graph embedding methods.
It implements many state-of-the-art embedding techniques including Locally Linear Em-
bedding (Roweis & Saul, 2000), Laplacian Eigenmaps (Belkin & Niyogi, 2003), Graph Fac-
torization (Ahmed, Shervashidze, Narayanamurthy, Josifovski, & Smola, 2013), HOPE
(Ou, Cui, Pei, Zhang, & Zhu, 2016), SDNE (Wang, Cui, & Zhu, 2016) and node2vec
(Grover & Leskovec, 2016). It is formatted such that new methods can be easily added
for comparison. Furthermore, the framework implements several functions to evaluate
the quality of obtained embedding including graph reconstruction, link prediction, visu-
alization and node classification. It supports many edge reconstruction metrics including
cosine similarity, euclidean distance and decoder based. For node classification, it de-
faults to one-vs-rest logistic regression classifier and supports other classifiers. For faster
execution, C++ backend is integrated using Boost for supported methods.
GEM was designed to be used by researchers studying graphs. It has already been used
in a number of scientific publications to compare novel methods against the state-of-
the-art and general evaluation (Salehi Rizi, Granitzer, & Ziegler, 2017, Lyu, Zhang, &
Zhang (2017)). A paper showcasing the results using GEM on various real world datasets
can be accessed (Goyal & Ferrara, 2018). The source code of GEM is made available at
https://github.com/palash1992/GEM. Bug reports and feedback can be directed to the
Github issues page (https://github.com/palash1992/GEM/issues).
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