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Summary

tidynamics provides an efficient implementation of the Fast Correlation Algorithm (FCA)
to compute correlation functions of interest in molecular (Allen & Tildesley, 1987; G.
R. Kneller, Keiner, Kneller, & Schiller, 1995) and stochastic (Gardiner, 2004) dynamics.
Building on the FCA, tidynamics computes the autocorrelation (the correlation of a time
series with itself), the correlation between two time-series, the mean-square displacement
of a trajectory, and the cross-displacement (for off-diagonal realisations of Brownian mo-
tion). These correlation functions serve for the quantitative measure of relaxation and
transport coefficients from numerical trajectories.
There is a lack of a self-contained implementation of the algorithm. The software nMoldyn
(Hinsen, Pellegrini, Stachura, & Kneller, 2012) implements it within a larger library but it
has a more complex interface and more dependencies. The goal of tidynamics is to serve
as a reference implementation with a lighter interface.
tidynamics is designed as a library in which every routine operates directly on NumPy
arrays and returns NumPy arrays. The interface is simple and enables convenient use in
interactive sessions or in teaching material. We test the library against Python 2.7, 3.5,
and 3.6 and several versions of NumPy to guard against a possible sensitivity to the API.
The Fast Correlation Algorithm relies on the Fourier transform to compute correlations.
For this purpose, we use NumPy’s (T. E. Oliphant, 2007) FFT module np.fft. The
advantage of using Fourier transforms is a reduced computational cost in comparison to a
direct loop over the data. We expect a scaling of the CPU time tCPU of tCPU ∝ N logN
where N is the length of the time series. We show in Figure 3 the actual CPU time and
compare it favourably to the expected scaling in the example Scaling behaviour.
NumPy (T. E. Oliphant, 2007) and SciPy (Jones, Oliphant, Peterson, & others, 2001)
implement correlation routines as well. In the case of NumPy, the computation is based
on a direct loop with a quadratic scaling of the CPU time O(N2). In SciPy, both the
direct and a Fourier transform version are implemented.
The definition of np.correlate and scipy.signal.correlate differs from the definition
traditionally used in dynamical systems in two ways. These routines do not correct for
aperiodic signals, an issue that is addressed in the Fast Correlation Algorithm by zero-
padding the signal, and they do not normalise the result by the actual number of samples.
In addition to these differences, the relative complexity of building SciPy and its larger
size motivated us to rely on NumPy only. NumPy and SciPy do not provide functions to
compute the mean-square displacement of trajectories. The Fast Correlation Algorithm
as applied to mean-square displacements was proposed by G. R. Kneller et al. (1995) and
is less known than the plain correlation algorithm.
The benefits of using tidynamics originate in the implementation of the suitable definitions
for the study of dynamical systems, good performance, and its ease of installation.
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Examples for the mean-square displacement
Random walk (num.)
Random walk (theo.)
Constant velocity (num.)
Constant velocity (theo.)
pedestrian

Figure 1: Mean-square displacement for a random walk and for a trajectory at constant velocity.

Examples

We show in Figures 1, 2, and 3 the examples provided with tidynamics. The examples in
the repository include short codes for a random walk, for the Ornstein-Uhlenbeck process,
and for the scaling performance analysis of the autocorrelation routine.
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Figure 2: Velocity autocorrelation function for a Ornstein-Uhlenbeck process (Gardiner, 2004).
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Figure 3: Scaling of the CPU time with respect to the length of the data.
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