
Nashpy: A Python library for the computation of Nash
equilibria
Vincent Knight1 and James Campbell1

1 Cardiff University, School of Mathematics, UKDOI: 10.21105/joss.00904

Software
• Review
• Repository
• Archive

Submitted: 31 May 2018
Published: 10 October 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

Game theory is the study of strategic interactions where the outcomes of choice depend
on the choices of all participants. A key solution concept in the field is that of Nash
Equilibrium (Nash & others, 1950). This solution concept corresponds to a coordinate at
which no participant has any incentive to change their choice.
As an example, consider the game of Rock Paper Scissors, which can be represented
mathematically using the following matrix:

A =

 0 −1 1
1 0 −1
−1 1 0


The rows and columns correspond to the actions available: Rock, Paper and Scissors. A
value of 1 indicates that that specific row beats the corresponding column and similarly a
value of -1 indicates a loss and a 0 indicates a tie. For example, A21 shows that Paper (the
second action) beats Rock (the first action). Using Nashpy, the equilibrium behaviour
can be computed:
>>> import nashpy as nash
>>> import numpy as np
>>> A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])
>>> game = nash.Game(A)
>>> for eq in game.support_enumeration():
... print(eq)
(array([0.33..., 0.33..., 0.33...]), array([0.33..., 0.33..., 0.33...]))

As expected: both players should play each action randomly (each with probability 1/3).
Computing these equilibria for large games, where individuals have many strategic options
available to them, requires the use of software implementations of known algorithms. A
number of algorithms exist to compute these Nash equilibria, for example the Lemke-
Howson algorithm (Lemke & Howson, 1964).

Statement of need

Access to these algorithms is non trival, an example is the modelling of healthcare deci-
sions (Vincent Knight, Komenda, & Griffiths, 2017) where a bespoke theoretic result was
used to design a specific algorithm for the computation of equilibria. Accessible software
would make that research more straightforward as no new algorithm would need to be
implemented.

Knight et al., (2018). Nashpy: A Python library for the computation of Nash equilibria. Journal of Open Source Software, 3(30), 904.
https://doi.org/10.21105/joss.00904

1

https://doi.org/10.21105/joss.00904
https://github.com/openjournals/joss-reviews/issues/904
https://github.com/drvinceknight/Nashpy
https://doi.org/10.5281/zenodo.1453761
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00904

The most mature piece of software available for the computation of equilibria is Gambit
(McKelvey, McLennan, & Turocy, 2006). Gambit has a Python wrapper to its core C
functionality however is not currently portable. For example Windows is not supported.
There does exist a web interface with a Gambit back end: Game theory explorer however
this is not practical for reproducible research.
Nashpy is a Python library with all dependencies being part of the standard scientific
Python stack—NumPy and SciPy (Jones, Oliphant, Peterson, & others, 2001)—thus
it is portable. For example, Windows support is regularly tested through a Windows
continuous integration service (Appveyor).
Nashpy currently implements 3 algorithms for the computation of equilibria (currently
only for 2-player games) and is extensively documented, including theoretic reference
material on the algorithms: nashpy.readthedocs.io. Furthermore, the software is auto-
matically tested using a combination of doc (this paper is also tested), unit, integration
and property based tests with 100% coverage.
Potential limitations of Nashpy are due to the complexity of the algorithms themselves.
For example, support enumeration enumerates all potential pairs of strategies. For n× n
square matrices it has O

(
2n2

)
complexity. All implementations provided in Nashpy ensure

these effects are reduced: NumPy (Jones et al., 2001) provides C based implementations
for vectorized performance. Furthermore, all algorithms are generators, which ensures
that not all equilibria must be found before one is returned. For example, below, an
11-by-11 game is considered and timings are shown for relative comparison. Using the
more efficient Lemke-Howson algorithm (Lemke & Howson, 1964), an equilibrium is found
approximately 3000 times faster.
>>> from pprint import pprint
>>> A = np.eye(11)
>>> game = nash.Game(A, A[::-1])
>>> pprint(next(game.support_enumeration())) # 2.26 s ± 118 ms per loop
(array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]),
array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]))

>>> pprint(next(game.lemke_howson_enumeration())) # 734 µs ± 5.27 µs per loop
(array([0.5, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5]),
array([0.5, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5]))

Nashpy is designed to be used by researchers but also students in courses in the fields
of mathematics, computer science and/or economics. It is currently being used in a
final-year course at Cardiff University. Due to the fact that the code is written entirely in
Python and is open source, this makes it a positive teaching tool as students can read and
understand the implementation of the algorithms. Nashpy has been archived to Zenodo
(Vince Knight & Baldevia, 2018).

Acknowledgements

We acknowledge code contributions from Ria Baldevia as well as many helpful discussions
with Nikoleta Glynatsi.
We would also like to the thank the reviewers and editor for their comments and sugges-
tions which helped improve this manuscript.

Knight et al., (2018). Nashpy: A Python library for the computation of Nash equilibria. Journal of Open Source Software, 3(30), 904.
https://doi.org/10.21105/joss.00904

2

http://gte.csc.liv.ac.uk/index/index.html#document-documentation
http://nashpy.readthedocs.io/
https://doi.org/10.21105/joss.00904

References

Jones, E., Oliphant, T., Peterson, P., & others. (2001). SciPy: Open source scientific
tools for Python. Retrieved from http://www.scipy.org/
Knight, V., & Baldevia, R. (2018, January). Drvinceknight/nashpy: V0.0.13.
doi:10.5281/zenodo.1163694
Knight, V., Komenda, I., & Griffiths, J. (2017). Measuring the price of anarchy in crit-
ical care unit interactions. Journal of the Operational Research Society, 68(6), 630–642.
doi:10.1057/s41274-016-0100-8
Lemke, C. E., & Howson, J. T., Jr. (1964). Equilibrium points of bimatrix games.
Journal of the Society for Industrial and Applied Mathematics, 12(2), 413–423.
doi:10.1137/0112033
McKelvey, R. D., McLennan, A. M., & Turocy, T. L. (2006). Gambit: Software tools for
game theory.
Nash, J. F., & others. (1950). Equilibrium points in n-person games. Proceedings of the
national academy of sciences, 36(1), 48–49. doi:10.1073/pnas.36.1.48

Knight et al., (2018). Nashpy: A Python library for the computation of Nash equilibria. Journal of Open Source Software, 3(30), 904.
https://doi.org/10.21105/joss.00904

3

http://www.scipy.org/
https://doi.org/10.5281/zenodo.1163694
https://doi.org/10.1057/s41274-016-0100-8
https://doi.org/10.1137/0112033
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.21105/joss.00904

	Summary
	Statement of need
	Acknowledgements
	References

