
hIPPYlib: An Extensible Software Framework for
Large-Scale Inverse Problems
Umberto Villa1, Noemi Petra2, and Omar Ghattas3

1 Institute for Computational Engineering & Sciences, The University of Texas at Austin 2 Applied
Mathematics, School of Natural Sciences, University of California, Merced 3 Institute for
Computational Engineering & Sciences, Department of Mechanical Engineering, and Department of
Geological Sciences, The University of Texas at Austin

DOI: 10.21105/joss.00940

Software
• Review
• Repository
• Archive

Submitted: 27 August 2018
Published: 23 October 2018

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

hIPPYlib (Villa, Petra, & Ghattas, 2018) implements state-of-the-art scalable algorithms
for deterministic and Bayesian inverse problems governed by partial differential equations
(PDEs); see, e.g., (Bui-Thanh, Ghattas, Martin, & Stadler, 2013), (N. Petra, Martin,
Stadler, & Ghattas, 2014) for an introduction to infinite dimensional PDE-constrained
Bayesian inverse problems. hIPPYlib builds on the parallel finite element library FEniCS,
(Logg & Wells, 2010), (Logg, Mardal, & Wells, 2012), (Langtangen & Logg, 2017), for
the discretization of the PDE and on PETSc, (Balay et al., 2018) for scalable and efficient
linear algebra operations and solvers.

Conceptually, hIPPYlib can be viewed as a toolbox that provides the building blocks for
experimenting new ideas and developing scalable algorithms for PDE-constrained deter-
ministic and Bayesian inverse problems.

In hIPPYlib the user can express the forward PDE and the likelihood in weak form using
the friendly, compact, near-mathematical notation of FEniCS, which will then automati-
cally generate efficient code for the discretization. Linear and nonlinear, and stationary
and time-dependent PDEs are supported in hIPPYlib. For stationary problems, gradient
and Hessian information can be automatically generated by hIPPYlib using FEniCS sym-
bolic differentiation of the relevant weak forms. For time-dependent problems, instead,
symbolic differentiation can only be used for the spatial terms, and the contribution to
gradients and Hessians arising from the time dynamics needs to be provided by the user.

Noise and prior covariance operators are modeled as inverses of elliptic differential oper-
ators allowing us to build on existing fast multigrid solvers for elliptic operators without
explicitly constructing the dense covariance operator.

The key property of the algorithms underlying hIPPYlib is that solution of the deter-
ministic and Bayesian inverse problem is computed at a cost, measured in forward PDE
solves, that is independent of the parameter dimension.

hIPPYlib provides a robust implementation of the inexact Newton-conjugate gradient
algorithm to compute the maximum a posterior (MAP) point. The gradient and Hessian
actions are computed via their weak form specification in FEniCS by constraining the state
and adjoint variables to satisfy the forward and adjoint problem. The Newton system
is solved inexactly by early termination of CG iterations via Eisenstat-Walker (to pre-
vent oversolving) and Steihaug (to avoid negative curvature) criteria. Two globalization
techniques are available to the user: Armijo back-tracking line search and trust region.
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In hIPPYlib, the posterior covariance is approximated by the inverse of the Hessian of the
negative log posterior evaluated at the MAP point. This Gaussian approximation is exact
when the parameter-to-observable map is linear; otherwise, its logarithm agrees to two
derivatives with the log posterior at the MAP point, and thus it can serve as a proposal
for Hessian-based Markov chain Monte Carlo (MCMC) methods. hIPPYlib makes the
construction of the posterior covariance tractable by invoking a low-rank approximation
of the Hessian of the log likelihood.
hIPPYlib also offers scalable methods for sample generation. To sample large scale spa-
tially correlated Gaussian random fields from the prior distribution, hIPPYlib implements
a new method that strongly relies on the structure of the covariance operator defined as
the inverse of a differential operator: by exploiting the assembly procedure of finite ele-
ment matrices hIPPYlib constructs a sparse Cholesky-like rectangular decomposition of
the precision operator. To sample from a local Gaussian approximation to the posterior
(such as at the MAP point) hIPPYlib exploits the low rank factorization of the Hessian
of the log likelihood to correct samples from the prior distribution. Finally, to explore
the posterior distribution, hIPPYlib implements dimension independent MCMC sampling
methods enchanted by Hessian information.
Finally, randomized and probing algorithms are available to compute the pointwise vari-
ance of the prior/posterior distribution and the trace of the covariance operator.
The source code for hIPPYlib has been archived to Zenodo with the linked DOI
10.5281/zenodo.596931.
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