
Verde: Processing and gridding spatial data using
Green’s functions
Leonardo Uieda1

1 Department of Earth Sciences, SOEST, University of Hawai’i at Mānoa, Honolulu, Hawaii, USADOI: 10.21105/joss.00957

Software
• Review
• Repository
• Archive

Submitted: 14 September 2018
Published: 11 October 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

Measurements made on the surface of the Earth are often sparse and unevenly distributed.
For example, GPS displacement measurements are limited by the availability of ground
stations and airborne geophysical measurements are highly sampled along flight lines
but there is often a large gap between lines. Many data processing methods require
data distributed on a uniform regular grid, particularly methods involving the Fourier
transform or the computation of directional derivatives. Hence, the interpolation of sparse
measurements onto a regular grid (known as gridding) is a prominent problem in the Earth
Sciences.
Popular gridding methods include kriging, minimum curvature with tension (W. Smith
& Wessel, 1990), and bi-harmonic splines (D. T. Sandwell, 1987). The latter belongs to a
group of methods often called radial basis functions and is similar to the thin-plate spline
(Franke, 1982). In these methods, the data are assumed to be represented by a linear
combination of Green’s functions,

di =

M∑
j=1

pjG(xi,xj),

in which di is the ith datum, pj is a scalar coefficient, G is a Green’s function, and xi

and xj are the position vectors for the datum and the point defining the Green’s function,
respectively. Interpolation is done by estimating the M pj coefficients through linear least-
squares and using them to predict data values at new locations on a grid. Essentially,
these methods are linear models used for prediction. As such, many of the model selection
and evaluation techniques used in machine learning can be applied to griding problems
as well.
Verde is a Python library for gridding spatial data using different Green’s functions. It dif-
fers from the radial basis functions in scipy.interpolate by providing an API inspired
by scikit-learn (Pedregosa et al., 2011). The Verde API should be familiar to scikit-
learn users but is tweaked to work with spatial data, which has Cartesian or geographic
coordinates and multiple data components instead of an X feature matrix and y label
vector. The library also includes more specialized Green’s functions (D. T. Sandwell &
Wessel, 2016), utilities for trend estimation and data decimation (which are often required
prior to gridding (W. Smith & Wessel, 1990)), and more. Some of these interpolation
and data processing methods already exist in the Generic Mapping Tools (GMT) (Wes-
sel, Smith, Scharroo, Luis, & Wobbe, 2013), a command-line program popular in the
Earth Sciences. However, there are no model selection tools in GMT and it can be dif-
ficult to separate parts of the processing that are done internally by its modules. Verde
is designed to be modular, easily extended, and integrated into the scientific Python
ecosystem. It can be used to implement new interpolation methods by subclassing the
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verde.base.BaseGridder class, requiring only the implementation of the new Green’s
function. For example, it is currently being used to develop a method for interpolation
of 3-component GPS data (Uieda, Sandwell, & Wessel, 2018).
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