
Managing Larger Data on a GitHub Repository
Carl Boettiger1

1 University of California, BerkeleyDOI: 10.21105/joss.00971

Software
• Review
• Repository
• Archive

Submitted: 21 September 2018
Published: 24 September 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Piggyback: Working with larger data in GitHub

GitHub has become a central component for preserving and sharing software-driven anal-
ysis in academic research (Ram, 2013). As scientists adopt this workflow, a desire to
manage data associated with the analysis in the same manner soon emerges. While small
data can easily be committed to GitHub repositories along-side source code and analy-
sis scripts, files larger than 50 MB cannot. Existing work-arounds introduce significant
complexity and break the ease of sharing (Boettiger, 2018a).
This package provides a simple work-around by allowing larger (up to 2 GB) data files to
piggyback on a repository as assets attached to individual GitHub releases. piggyback
provides a workflow similar to Git LFS (“Git LFS,” 2018), in which data files can be
tracked by type and pushed and pulled to GitHub with dedicated commands. These files
are not handled by git in any way, but instead are uploaded, downloaded, or edited directly
by calls through the GitHub API (“GitHub API version 3,” 2018). These data files can be
versioned manually by creating different releases. This approach works equally well with
public or private repositories. Data can be uploaded and downloaded programmatically
from scripts. No authentication is required to download data from public repositories.

Examples

As long as a repository has at least one release, users can upload a set of specified files from
the current repository to that release by simply passing the file names to pb_upload().
Specify individual files to download using pb_download(), or use no arguments to down-
load all data files attached to the latest release. Alternatively, users can track files by a
given pattern: for instance, pb_track("*.csv") will track all *.csv files in the reposi-
tory. Then use pb_upload(pb_track()) to upload all currently tracked files. piggyback
compares timestamps to avoid unnecessary transfer. The piggyback package looks for
the same GITHUB_TOKEN environmental variable for authentication that is used across
GitHub APIs. Details are provided in an introductory vignette (Boettiger, 2018b).

References

Boettiger, C. (2018a). Piggyback comparison to alternatives. Retrieved from https://
ropensci.github.io/piggyback/articles/alternatives.html
Boettiger, C. (2018b). Piggyback Data atop your GitHub Repository! Retrieved from
https://ropensci.github.io/piggyback/articles/intro.html
Git LFS. (2018). https://git-lfs.github.com/. Retrieved from https://git-lfs.github.com/
GitHub API version 3. (2018). https://developer.github.com/v3/. Retrieved from https:
//developer.github.com/v3/

Boettiger, (2018). Managing Larger Data on a GitHub Repository. Journal of Open Source Software, 3(29), 971.
https://doi.org/10.21105/joss.00971

1

https://doi.org/10.21105/joss.00971
https://github.com/openjournals/joss-reviews/issues/971
https://github.com/ropensci/piggyback
http://creativecommons.org/licenses/by/4.0/
https://ropensci.github.io/piggyback/articles/alternatives.html
https://ropensci.github.io/piggyback/articles/alternatives.html
https://ropensci.github.io/piggyback/articles/intro.html
https://git-lfs.github.com/
https://git-lfs.github.com/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://doi.org/10.21105/joss.00971


Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in
science. Source Code for Biology and Medicine, 8(1), 7. doi:10.1186/1751-0473-8-7

Boettiger, (2018). Managing Larger Data on a GitHub Repository. Journal of Open Source Software, 3(29), 971.
https://doi.org/10.21105/joss.00971

2

https://doi.org/10.1186/1751-0473-8-7
https://doi.org/10.21105/joss.00971

	Piggyback: Working with larger data in GitHub
	Examples

	References

