rr2: An R package to calculate R^2s for regression models

Anthony R. Ives1 and Daijiang Li2

1 Department of Integrative Biology, UW-Madison, Madison, WI 53706 2 Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611

Summary

Reporting the variance explained by a model (an R^2) is common for many simple statistical tests. However, conceptual challenges exist in defining R^2s for models that include correlated data. Ives (2018) proposed three R^2s (R^2_{lik}, R^2_{resid}, and R^2_{pred}) for a variety of regression models that include correlation among data such as linear mixed models (LMMs), generalized linear mixed models (GLMMs), and phylogenetic regressions (Ives & Garland, 2014; PGLMMs, Ives & Helmus, 2011). These three R^2s can also be used as partial R^2s to compare the contributions of predictor variables (fixed effects) and/or correlation structures (random effects) to the fit of the models.

The \texttt{rr2} package provides R functions to implement the R^2s proposed by Ives (2018). The main function, \texttt{R2()}, calculates all three R^2s by default, with arguments available to select which R^2(s) to calculate by users. Alternatively, individual R^2s can be calculated with corresponding functions (\texttt{R2_lik()}, \texttt{R2_resid()}, and \texttt{R2_pred()}). Supported models include linear models (\texttt{lm}), generalized linear models (\texttt{glm}), linear mixed models (\texttt{lmerMod}), generalized linear mixed models (\texttt{glmerMod}), phylogenetic generalized least squares models (\texttt{phylolm}), phylogenetic logistic regression (\texttt{phyloglm}), and phylogenetic generalized linear mixed models (\texttt{binaryPGLMM} and \texttt{communityPGLMM}).

The R package \texttt{rr2} is available on Github, where issues can be opened.

Acknowledgments

This work was funded by NSF grants NSF/NASA-DEB-Dimensions 1240804 and DEB-LTREB-1052160.

References

