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Summary

Finding the antiderivative of expressions is often challenging and requires advanced math-
ematical skills even for simple looking problems. Computer algebra systems (CAS) like
Mathematica (Wolfram Research, Inc., Champaign, IL), Maple (Maplesoft, a division of
Waterloo Maple Inc., Waterloo, Ontario), and Maxima (maxima.sourceforge.net) provide
integrators to compute antiderivatives symbolically. However, these systems give no in-
sight as to how an antiderivative is found or why it could not be computed. Also, they use
advanced methods incomprehensible to humans that often result in huge antiderivatives
unnecessarily involving special functions.

In this work we present Rubi (The Rubi Organization, 2018a), a rule-based integrator
and its implementation in Mathematica (The Rubi Organization, 2018b). Rubi system-
atically applies an extensive system of symbolic integration rules able to find the optimal
antiderivative of a wide variety of mathematical expressions. It currently has over 6600
rules implemented in Mathematica’s pattern-matching language. Some of these rules are
based on integration formulas from (Abramowitz, 2012; Burington, 1973; Gradshteyn,
2014; Zwillinger, 2011) transformed into rules that include precise instructions as to
when a formula should be applied. Numerous other rules were derived during Rubi’s
development in order to integrate expressions not addressed by formulas in published
tables.

The key to the success of Rubi is the rigorous definition of conditions for the integration
steps that determine under which circumstances the application of a specific rule is correct
and useful. Therefore, Rubi produces optimal antiderivatives that are often dramatically
simpler than antiderivatives provided by commercial CAS integrators.

Rubi is implemented as a Mathematica package that gives the user the option to inspect
integration steps and application conditions in detail. An extensive test-suite of over
70,000 integrals with known, optimal antiderivatives is employed to thoroughly test the
system before each new release (The Rubi Organization, 2018c). Since it is also useful
for testing other symbolic integrators, the entire test-suite is available on Rubi’s website
(The Rubi Organization, 2018a) expressed in Axiom, Maple, Mathematica, and Maxima
syntax. Also on the website are PDF files showing how Rubi and Mathematica’s built-in
integrator perform on the test-suite. All information about Rubi, i.e. integration rules,
source-code, and test-files, is publicly available on its GitHub organization page (The
Rubi Organization, 2018d).

However, the value of Rubi goes far beyond its Mathematica implementation. All integra-
tion rules are available in human readable form as PDF files or Mathematica notebooks
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In[]:= Steps@Int[(Sec[x]^2 + Sec[x]^2*Tan[x])/((2 - Tan[x])*Sqrt[1 + Tan[x]^3]), x]
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Figure 1: Example of computing the antiderivative of an expression, showing intermediate results
and applied rules.

that contain additional details and references to the relevant literature. Since Rubi’s
rules in general only require a system for manipulating symbolic expressions by applying
pattern-based rules, it is feasible to implement the integration rules in other systems.

That this is indeed possible has been shown in the case of Symja (Kramer, 2013), an open-
source Java system for symbolic math, where we assisted in the translation and testing
of Rubi’s integration rules. Now Rubi is used as the main integration engine in Symja
for all but the most trivial problems. Furthermore, there are efforts to include Rubi into
SymPy (Meurer et al., 2017), a Python library for symbolic mathematics, which would
allow Rubi’s use in Sage(The Sage Developers, 2018), a free and open-source CAS.

Ultimately, the rationale behind Rubi is to make rule-based integration publicly available
to enable researchers and enthusiast to find optimal antiderivatives and to verify the
correctness of each integration step in the context of their problems.

Short Example

Figure 1 shows the computation of

∫
sec(x)2 + sec(x)2 · tan(x)

(2− tan(x)) ·
√

1 + tan(x)3
dx

using Rubi when all integration steps are displayed. The specific rules that are applied
are shown in red, and it is possible to open the rule display to inspect the exact conditions
that need to hold to make the transformation valid. In blue, the intermediate expressions
are visible. At the end the final antiderivative is returned. It should be noted that the
size of the found antiderivative is 25, counting the leaves in the expression tree of the
result. In comparison, Mathematica’s current version 11.3 returns an antiderivative that
has a leaf count of 290 and contains complex terms.
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