
Rule-based integration: An extensive system of symbolic
integration rules
Albert Rich1, Patrick Scheibe2, and Nasser M Abbasi3

1 Independent researcher, co-author of the Derive computer algebra system 2 Leipzig University,
Saxonian Incubator for Clinical Translation, Philipp-Rosenthal-Straße 55, 04103 Leipzig 3
UW-Madison, Madison, WI 53706, USA

DOI: 10.21105/joss.01073

Software
• Review
• Repository
• Archive

Submitted: 29 October 2018
Published: 16 December 2018

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Finding the antiderivative of expressions is often challenging and requires advanced math-
ematical skills even for simple looking problems. Computer algebra systems (CAS) like
Mathematica (Wolfram Research, Inc., Champaign, IL), Maple (Maplesoft, a division of
Waterloo Maple Inc., Waterloo, Ontario), and Maxima (maxima.sourceforge.net) provide
integrators to compute antiderivatives symbolically. However, these systems give no in-
sight as to how an antiderivative is found or why it could not be computed. Also, they use
advanced methods incomprehensible to humans that often result in huge antiderivatives
unnecessarily involving special functions.

In this work we present Rubi (The Rubi Organization, 2018a), a rule-based integrator
and its implementation in Mathematica (The Rubi Organization, 2018b). Rubi system-
atically applies an extensive system of symbolic integration rules able to find the optimal
antiderivative of a wide variety of mathematical expressions. It currently has over 6600
rules implemented in Mathematica’s pattern-matching language. Some of these rules are
based on integration formulas from (Abramowitz, 2012; Burington, 1973; Gradshteyn,
2014; Zwillinger, 2011) transformed into rules that include precise instructions as to
when a formula should be applied. Numerous other rules were derived during Rubi’s
development in order to integrate expressions not addressed by formulas in published
tables.

The key to the success of Rubi is the rigorous definition of conditions for the integration
steps that determine under which circumstances the application of a specific rule is correct
and useful. Therefore, Rubi produces optimal antiderivatives that are often dramatically
simpler than antiderivatives provided by commercial CAS integrators.

Rubi is implemented as a Mathematica package that gives the user the option to inspect
integration steps and application conditions in detail. An extensive test-suite of over
70,000 integrals with known, optimal antiderivatives is employed to thoroughly test the
system before each new release (The Rubi Organization, 2018c). Since it is also useful
for testing other symbolic integrators, the entire test-suite is available on Rubi’s website
(The Rubi Organization, 2018a) expressed in Axiom, Maple, Mathematica, and Maxima
syntax. Also on the website are PDF files showing how Rubi and Mathematica’s built-in
integrator perform on the test-suite. All information about Rubi, i.e. integration rules,
source-code, and test-files, is publicly available on its GitHub organization page (The
Rubi Organization, 2018d).

However, the value of Rubi goes far beyond its Mathematica implementation. All integra-
tion rules are available in human readable form as PDF files or Mathematica notebooks

Rich et al., (2018). Rule-based integration: An extensive system of symbolic integration rules. Journal of Open Source Software, 3(32), 1073.
https://doi.org/10.21105/joss.01073

1

https://doi.org/10.21105/joss.01073
https://github.com/openjournals/joss-reviews/issues/1073
https://github.com/RuleBasedIntegration/JOSS-Publication
https://doi.org/10.5281/zenodo.2234522
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01073


In[]:= Steps@Int[(Sec[x]^2 + Sec[x]^2*Tan[x])/((2 - Tan[x])*Sqrt[1 + Tan[x]^3]), x]

 F(tan(a + b x)) ⅆx ⟶ Subst∫ F(x)
1+x2

ⅆx, x, tan(a + b x)
b

SubstInt 1 + x

(2 - x) 1 + x3
, x, x, Tan[x]

 e + f x

(c + d x) a + b x3

ⅆx ⟶ -

(2 e) Subst ∫ 1

9-ax2
ⅆx, x,

1+f x
e

2
a+b x3

d

Dist2, SubstInt 1

9 - x2
, x, x,

(1 + Tan[x])2

1 + Tan[x]3
, x

 1

a + b x2
ⅆx ⟶ tanh-1 -b x

a


a -b

2

3
ArcTanh (1 + Tan[x])2

3 1 + Tan[x]3


Copy Steps

Out[]=
2

3
ArcTanh (1 + Tan[x])2

3 1 + Tan[x]3


Figure 1: Example of computing the antiderivative of an expression, showing intermediate results
and applied rules.

that contain additional details and references to the relevant literature. Since Rubi’s
rules in general only require a system for manipulating symbolic expressions by applying
pattern-based rules, it is feasible to implement the integration rules in other systems.

That this is indeed possible has been shown in the case of Symja (Kramer, 2013), an open-
source Java system for symbolic math, where we assisted in the translation and testing
of Rubi’s integration rules. Now Rubi is used as the main integration engine in Symja
for all but the most trivial problems. Furthermore, there are efforts to include Rubi into
SymPy (Meurer et al., 2017), a Python library for symbolic mathematics, which would
allow Rubi’s use in Sage(The Sage Developers, 2018), a free and open-source CAS.

Ultimately, the rationale behind Rubi is to make rule-based integration publicly available
to enable researchers and enthusiast to find optimal antiderivatives and to verify the
correctness of each integration step in the context of their problems.

Short Example

Figure 1 shows the computation of

∫
sec(x)2 + sec(x)2 · tan(x)

(2− tan(x)) ·
√

1 + tan(x)3
dx

using Rubi when all integration steps are displayed. The specific rules that are applied
are shown in red, and it is possible to open the rule display to inspect the exact conditions
that need to hold to make the transformation valid. In blue, the intermediate expressions
are visible. At the end the final antiderivative is returned. It should be noted that the
size of the found antiderivative is 25, counting the leaves in the expression tree of the
result. In comparison, Mathematica’s current version 11.3 returns an antiderivative that
has a leaf count of 290 and contains complex terms.

Rich et al., (2018). Rule-based integration: An extensive system of symbolic integration rules. Journal of Open Source Software, 3(32), 1073.
https://doi.org/10.21105/joss.01073

2

https://doi.org/10.21105/joss.01073


Acknowledgements

We to thank David Jeffrey, Daniel Lichtblau, David Stoutemyer, and Martin Welz for
contributions and fruitful discussions.

References

Abramowitz, I. A., Milton AND Stegun. (2012). Handbook of mathematical functions.
New York: Courier Corporation.

Burington, R. S. (1973). Handbook of mathematical tables and formulas (5th ed.). New
York: McGraw-Hill.

Gradshteyn, I. M., I S AND Ryzhik. (2014). Table of integrals, series, and products.
Amsterdam, Boston: Academic Press.

Kramer, A. (2013). Symja library – java symbolic math system. Retrieved October 25,
2018, from https://github.com/axkr/symja_android_library

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., et al. (2017). SymPy: Symbolic computing in python. PeerJ Computer Science, 3,
103. doi:10.7717/peerj-cs.103

The Rubi Organization. (2018a). Rule-based integration – an extensive system of sym-
bolic integration rules. Retrieved October 25, 2018, from https://rulebasedintegration.org

The Rubi Organization. (2018b). Mathematica Implementation of Rubi. Retrieved Oc-
tober 25, 2018, from https://github.com/RuleBasedIntegration/Rubi

The Rubi Organization. (2018c). Rubi Mathematica Test Suite. Retrieved October 25,
2018, from https://github.com/RuleBasedIntegration/MathematicaSyntaxTestSuite

The Rubi Organization. (2018d). The Rubi GitHub Organization. Retrieved October 25,
2018, from https://github.com/RuleBasedIntegration

The Sage Developers. (2018). SageMath, the Sage Mathematics Software System.

Zwillinger, D. (2011). CRC standard mathematical tables and formulae (32nd ed.). Boca
Raton, Fla: CRC Press.

Rich et al., (2018). Rule-based integration: An extensive system of symbolic integration rules. Journal of Open Source Software, 3(32), 1073.
https://doi.org/10.21105/joss.01073

3

https://github.com/axkr/symja_android_library
https://doi.org/10.7717/peerj-cs.103
https://rulebasedintegration.org
https://github.com/RuleBasedIntegration/Rubi
https://github.com/RuleBasedIntegration/MathematicaSyntaxTestSuite
https://github.com/RuleBasedIntegration
https://doi.org/10.21105/joss.01073

	Summary
	Short Example
	Acknowledgements
	References

