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Summary

Discussions of machine learning are frequently characterized by a singular focus on algo-
rithmic behavior. Be it logistic regression, random forests, Bayesian methods, or artificial
neural networks, practitioners are often quick to express their preference. However, model
selection is more nuanced than simply picking the “right” or “wrong” algorithm. In prac-
tice, the workflow includes multiple iterations through feature engineering, algorithm
selection, and hyperparameter tuning — summarized by Kumar et al. as a search for the
maximally performing model selection triple (Kumar, McCann, Naughton, & Patel, 2016).
“Model selection,” they explain, “is iterative and exploratory because the space of [model
selection triples] is usually infinite, and it is generally impossible for analysts to know a
priori which [combination] will yield satisfactory accuracy and/or insights.”
Treating model selection as search has led to automation through grid search methods,
standardized APIs, drag and drop GUIs, and specialized database systems. However,
the search problem is computationally intractable and research in both machine learning
(Wickham, Cook, & Hofmann, 2015) and visual analytics (Liu, Wang, Liu, & Zhu, 2017)
suggests human intuition and guidance can more effectively hone in on quality models
than exhaustive optimization methods. By visualizing the model selection process, data
scientists can interactively steer towards final, interpretable models and avoid pitfalls and
traps (Kapoor, Lee, Tan, & Horvitz, 2010).
Yellowbrick is a response to the call for open source visual steering tools. For data sci-
entists, Yellowbrick helps evaluate the stability and predictive value of machine learning
models and improves the speed of the experimental workflow. For data engineers, Yellow-
brick provides visual tools for monitoring model performance in real world applications.
For users of models, Yellowbrick provides visual interpretation of the behavior of the
model in high dimensional feature space. Finally, for students, Yellowbrick is a frame-
work for understanding a large variety of algorithms and methods.
Implemented in Python, the Yellowbrick visualization package achieves steering by ex-
tending both scikit-learn (Pedregosa et al., 2011) and Matplotlib (Hunter, 2007). Like
Yellowbrick, both scikit-learn and Matplotlib are extensions of SciPy (Jones, Oliphant,
Peterson, & others, n.d.), libraries intended to facilitate scientific computing. Scikit-learn
provides a generalized API for machine learning by exposing the concept of an Estimator,
an object that learns from data. Yellowbrick in turn extends this concept with the idea of
a Visualizer, an object that both learns from data and visualizes the result. Visualizers
wrap Matplotlib procedures to produce publication-ready figures and rich visual analytics.
Because Yellowbrick is part of a rich visual and machine learning ecosystem, it provides
visualizations for feature and target analysis, classification, regression, and clustering
model visualization, hyperparameter tuning, and text analysis. A few selected examples
of visual diagnostics for model selection and their interpretations follow.
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Figure 1: Feature Analysis

Figure 2: Regression Model Tuning

Because “more data beats better algorithms” (Rajaraman, 2008), the first step to creating
valid, predictive models is to find the minimum set of features that predicts the dependent
variable. Generally, this means finding features that describe data in high dimensional
space that are separable (i.e., by a hyperplane). Tools like RadViz, ParallelCoordinates,
and Manifold help visualize high dimensional data for quick diagnostics. Bayesian mod-
els and regressions suffer when independent variables are collinear (i.e., exhibit pairwise
correlation). Rank2D visualizations show pairwise correlations among features and can
facilitate feature elimination.
Regression models hypothesize some underlying function influenced by noise whose central
tendency can be inferred. The PredictionError visualizer shows the relationship of
actual to predicted values, giving a sense of heteroskedasticity in the target, or regions
of more or less error as predictions deviate from the 45 degree line. The ResidualsPlot
shows the relationship of error in the training and test data and can also show regions of
increased variability in the predictive model.
Classification analysis focuses on the precision and recall of the model’s prediction of
individual classes. The ClassificationReport visualizer allows for rapid comparison
between models as a visual heatmap of these metrics. The DiscriminationThreshold
visualizer for binary classifiers shows how adjusting the threshold for positive classification
may influence precision and recall globally, as well as the number of points that may
require manual checking for stricter determination.
Searching for structure in unlabelled data can be challenging because evaluation is largely
qualitative. When using K-Means models, choosing K has a large impact on the quality
of the analysis; the KElbowVisualizer can help select the best K given computational
constraints. The SilhouetteVisualizer shows the relationship of points in each cluster
relative to other clusters and gives an overview of the composition and size of each cluster
which may hint at how models group similar data points.
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Figure 3: Classification Model Tuning

Figure 4: Clustering Model Tuning

Figure 5: Hyperparameter Tuning
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Yellowbrick also offers several other techniques for hyperparameter tuning. Model and
regression-specific AlphaSelection visualizers help identify the impact of regularization
on linear models and the influence of complexity on the trade-off between error due to bias
or variance. More generally, the LearningCurve visualizer shows how sensitive models
are to the amount of data the model is trained on.
Yellowbrick includes many more visualizations, intended to fit directly into the machine
learning workflow, and many more are being added in each new release. From text analysis-
specific visualizations to missing data analysis, to a contrib module that focuses on other
machine learning libraries, Yellowbrick has tools to facilitate all parts of hypothesis driven
development. The source code for Yellowbrick has been archived to Zenodo and the most
recent version can be obtained with the linked DOI: (Bengfort, Bilbro, Danielsen, Gray,
& others, 2018).
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