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Summary

Random forests (Breiman, 2001) are a popular class of supervised learning models that
have demonstrated impressive empirical success across a wide variety of problems. The
predictive accuracy of random forests stems from their ability to learn high-order, non-
linear interactions in large datasets. Although approaches exist for evaluating the im-
portance of individual features in a fitted random forest, identifying interactions that
drive predictive accuracy remains a challenge. This challenge is in large part due to the
enourmous number of interactions that must be considered (i.e. there are O(ps) possible
interactions of size s among p features) and the instability of random forest decision paths.
The iterative Random Forest algorithm (iRF), and corresponding iRF R package, take
a step towards addressing these issues with a computationally tractable approach to
search for important interactions in a fitted random forest (Basu, Kumbier, Brown, &
Yu, 2018,Kumbier, Basu, Brown, Celniker, & Yu (2018)). Our algorithm grows a series
of feature weighted random forests (Amaratunga, Cabrera, & Lee, 2008) to perform soft
regularization on the model based on predictive features. We then search for prevalent
interactions in the fitted random forest using a generalization of random intersection trees
(Shah & Meinshausen, 2014). Finally, we assess the stability of recovered interactions
by repeating this search across random forests trained on bootstrap samples of the data.
The iRF R package combines these steps into a single workflow. It is based on the source
codes from the R packages randomForest (Liaw & Wiener, 2002) and FSInteract (Shah
& Meinshausen, 2014). A detailed vignette is available here.
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