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Summary

Reinforcement learning refers to a group of methods from artificial intelligence where an agent
performs learning through trial and error (Sutton & Barto, 1998). It differs from supervised
learning, since reinforcement learning requires no explicit labels; instead, the agent interacts
continuously with its environment. That is, the agent starts in a specific state and then
performs an action, based on which it transitions to a new state and, depending on the
outcome, receives a reward. Different strategies (e.g. Q-learning) have been proposed to
maximize the overall reward, resulting in a so-called policy, which defines the best possible
action in each state. As a main advantage, reinforcement learning is applicable to situations
in which the dynamics of the environment are unknown or too complex to evaluate (e.g. Mnih
et al., 2015). However, there is currently no package available for performing reinforcement
learning in R. As a remedy, we introduce the ReinforcementLearning R package, which
allows an agent to learn the optimal behavior based on sampling experience consisting of states,
actions and rewards (Pröllochs & Feuerriegel, 2017). Based on such training examples, the
package allows a reinforcement learning agent to learn an optimal policy that defines the best
possible action in each state. Main features of ReinforcementLearning include, but are
not limited to:

• Learning an optimal policy from a fixed set of a priori known transition samples
• Predefined learning rules and action selection modes
• A highly customizable framework for model-free reinforcement learning tasks

Statement of Need

Reinforcement learning techniques can primarily be categorized in two groups, namely, model-
based and model-free approaches (Sutton & Barto, 1998). The former, model-based algo-
rithms, rely on explicit models of the environment that fully describe the probabilities of state
transitions, as well as the consequences of actions and the associated rewards. Specifically,
corresponding algorithms are built upon explicit representations of the environment given in
the form of Markov decision processes. These MDPs can be solved by various, well-known
algorithms, including value iteration and policy iteration, in order to derive the optimal be-
havior of an agent. These algorithms are also implemented within the statistical software R.
For instance, the package MDPtoolbox solves such models based on an explicit formalization
of the MDP, i.e. settings in which the transition probabilities and reward functions are known
a priori (Chades, Chapron, Cros, Garcia, & Sabbadin, 2017).
The second category of reinforcement learning comprises model-free approaches that forgo
any explicit knowledge regarding the dynamics of the environment. These approaches learn
the optimal behavior through trial-and-error by directly interacting with the environment. In
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this context, the learner has no explicit knowledge of either the reward function or the state
transition function (Sutton & Barto, 1998). Instead, the optimal behavior is iteratively inferred
from the consequences of actions on the basis of past experience. As a main advantage, this
method is applicable to situations in which the dynamics of the environment are unknown
or too complex to evaluate. However, the available tools in R are not yet living up to the
needs of users in such cases. In fact, there is currently no package available that allows one
to perform model-free reinforcement learning in R. Hence, users that aim to teach optimal
behavior through trial-and-error learning must implement corresponding learning algorithms
in a manual way.
As a remedy, we introduce the ReinforcementLearning package for R, which allows an
agent to learn the optimal behavior based on sampling experience consisting of states, actions
and rewards (Pröllochs & Feuerriegel, 2017). The training examples for reinforcement learning
can originate from real-world applications, such as sensor data. In addition, the package is
shipped with the built-in capability to sample experience from a function that defines the
dynamics of the environment. In both cases, the result of the learning process is a highly
interpretable reinforcement learning policy that defines the best possible action in each state.
The package provides a remarkably flexible framework, which makes it readily applicable to a
wide range of different problems. Among other functions, it allows one to customize a variety
of learning parameters and elaborates on how to mitigate common performance in common
solution algorithms (e.g. experience replay). The package vignette demonstrates its use by
drawing upon common examples from the literature (e.g. finding optimal game strategies).

Functionality

The ReinforcementLearning package utilizes different mechanisms for reinforcement learn-
ing, including Q-learning and experience replay. It thereby learns an optimal policy based on
past experience in the form of sample sequences consisting of states, actions and rewards.
Consequently, each training example consists of a state-transition tuple (si, ai, ri+1, si+1) as
follows:

• si is the current environment state.
• ai denotes the selected action in the current state.
• ri+1 specifies the immediate reward received after transitioning from the current state

to the next state.
• si+1 refers to the next environment state.

The training examples for reinforcement learning can (1) be collected from an external source
and inserted into a tabular data structure, or (2) generated dynamically by querying a function
that defines the behavior of the environment. In both cases, the corresponding input must
follow the same tuple structure (si, ai, ri+1, si+1).
Learning from pre-defined observations is beneficial when the input data is pre-determined
or one wants to train an agent that replicates past behavior. In this case, one merely needs
to insert a tabular data structure with past observations into the package. This might be
the case when the state-transition tuples have been collected from an external source, such
as sensor data, and one wants to learn an agent by eliminating further interaction with the
environment.
An alternative strategy is to define a function that mimics the behavior of the environment.
One can then learn an agent that samples experience from this function. Here the environment
function takes a state-action pair as input. It then returns a list containing the name of the
next state and the reward. In this case, one can also utilize R to access external data sources,
such as sensors, and execute actions via common interfaces. The structure of such a function
is represented by the following pseudocode:
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environment <- function(state, action) {
...
return(list("NextState" = newState,

"Reward" = reward))
}

After specifying the environment function, one can use sampleExperience() to collect ran-
dom sequences from it. Thereby, the input specifies number of samples (N), the environment
function, the set of states (i.e. S) and the set of actions (i.e. A). The return value is
then a data frame containing the experienced state transition tuples (si, ai, ri+1, si+1) for
i = 1, . . . , N .

Notes on performance

Q-learning is guaranteed to converge to an optimal policy. However, the method is compu-
tationally demanding as it relies on continuous interactions between an agent and its envi-
ronment. To remedy this, the ReinforcementLearning package allows users to perform
batch reinforcement learning. In most scenarios, this reinforcement learning variant benefits
computational performance as it mitigates the ‘exploration overhead’ problem in pure online
learning. In combination with experience replay, it speeds up convergence by collecting and
replaying observed state transitions repeatedly to the agent as if they were new observations
collected while interacting with the system. Nonetheless, due to the fact that the package
is written purely in R, the applicability of the package to very large scale problems (such as
applications from computer vision) is still limited. In the following, we briefly summarize sce-
narios the package is capable of handling and situations in which one should consider utilizing
reinforcement learning implementations written in “faster” programming languages.
What the ReinforcementLearning R package can do:

• Learning optimal strategies for real-world problems with limited state and action sets
(e.g. finding optimal strategies for simple games, training a simple stock market trading
agent, learning polarity labels in applications from natural language processing).

• The packages allows one to speed up performance by adjusting learning parameters and
making use of experience replay.

• The package allows one to train an agent from pre-defined observations without the
need for modeling the dynamics of the environment. Typically, this approach drastically
speeds up convergence and can be useful in situations in which the state-transition
tuples have been collected from an external source, such as sensor data.

• The package provides a highly customizable framework for model-free reinforcement
learning tasks in which the functionality can easily be extended. For example, users
may attempt to speed up performance by defining alternative reinforcement learning
algorithms and integrating them into the package code.

What the ReinforcementLearning R package cannot do:

• Solving large-scale problems with high-dimensional state-action spaces such as those
from computer vision (users may consider reinforcement learning implementations writ-
ten in “faster” programming languages)

• Solving reinforcement learning problems requiring real-time interaction (e.g. real-time
interaction with a robot)
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