OApackage: A Python package for generation and analysis of orthogonal arrays, optimal designs and conference designs

Pieter Thijs Eendebak1, 2 and Alan Roberto Vazquez1, 3

1Department of Engineering Management, University of Antwerp, Belgium 2Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft, The Netherlands 3Department of Biosystems, KU Leuven, Leuven, Belgium

Summary

Orthogonal arrays, optimal designs and conference designs are important tools for the design of experiments (Elster & Neumaier, 1995), (Hedayat, Sloane, & Stufken, 2012), (Wu & Hamada, 2009). The OApackage (Orthogonal Array package) contains functionality to generate and analyse these types of designs. More specifically, the OApackage allows the user to:

- Efficiently generate orthogonal arrays, optimal designs and conference designs
- Reduce the designs to their normal form and perform isomorphism testing
- Calculate a wide variety of statistical properties of the designs

The data analysis of the experiments conducted using the generated designs is left to existing statistical software such as R (R Core Team, 2018) and JMP (Wikipedia contributors, 2018).

To generate orthogonal arrays and conference designs, the OApackage uses an exhaustive generation procedure with isomorphism pruning (Schoen, Eendebak, & Nguyen, 2010), (Schoen, Eendebak, & Goos, 2019). To generate optimal designs, the package uses a flexible optimality criterion and a coordinate-exchange optimization algorithm (Eendebak & Schoen, 2017).

The reduction of the designs to their normal form is done by either reduction to a minimal form (such as lexicographically minimal in columns or delete-one-factor projection normal form (P. Eendebak, 2014)) or reduction using graph algorithms. For designs with a specified isomorphism group, the OApackage provides a generic interface to the graph reduction algorithms that effectively perform isomorphism testing and reduction to normal form.

The OApackage evaluates the orthogonal arrays, optimal designs and conference designs using well-known statistical criteria. For instance, the package can calculate the generalized wordlength pattern and confounding frequency vector (Tang & Deng, 1999), which are based on the J-characteristics (Deng & Tang, 1999), and the number of degrees of freedom available for estimating selected factors’ effects. The package can also calculate the \(F_4 \) vector of conference designs (Schoen et al., 2019) and the D-efficiency of optimal designs (Goos & Jones, 2011).

The OApackage consists of a C++ library with a Python interface generated by SWIG. The source code is available at \(\text{https://github.com/eendebakpt/oapackage} \). Examples for
both generation and analysis of designs are available in the OApackage documentation (P. Eendebak & Vazquez, 2018). The Orthogonal Array package website (P. Eendebak, 2018) contains a large collection of orthogonal arrays, optimal designs and conference designs generated with the package.

Acknowledgements

We acknowledge useful discussions with Eric Schoen during the development of this project.

References

