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Summary

While conceptually simple, Bayesian methods can be mathematically and numerically
challenging. Probabilistic programming languages (PPLs) implement functions to easily
build Bayesian models together with efficient automatic inference methods. This helps
separate the model building from the inference, allowing practitioners to focus on their
specific problems and leaving PPLs to handle the computational details for them (Bessiere,
Mazer, Ahuactzin, & Mekhnacha, 2013; Daniel Roy, 2015; Ghahramani, 2015). The
inference process generates a posterior distribution — which has a central role in Bayesian
statistics — together with other distributions like the posterior predictive distribution and
the prior predictive distribution. The correct visualization, analysis, and interpretation
of these distributions is key to properly answer the questions that motivate the inference
process.

When working with Bayesian models there are a series of related tasks that need to be
addressed besides inference itself:

• Diagnoses of the quality of the inference
• Model criticism, including evaluations of both model assumptions and model pre-

dictions
• Comparison of models, including model selection or model averaging
• Preparation of the results for a particular audience

Successfully performing such tasks are central to the iterative and interactive modeling
process. These tasks require both numerical and visual summaries to help statisticians
or practitioners analyze visual summaries. In the words of Persi Diaconis (Diaconis,
2011) “Exploratory data analysis seeks to reveal structure, or simple descriptions in data.
We look at numbers or graphs and try to find patterns. We pursue leads suggested by
background information, imagination, patterns perceived, and experience with other data
analyses”.

For these reasons we introduce ArviZ, a Python package for exploratory analysis of
Bayesian models. ArviZ aims to be a package that integrates seamlessly with estab-
lished probabilistic programming languages like PyStan (“Stan,” n.d.), PyMC (Salvatier,
Wiecki, & Fonnesbeck, 2016), Edward (Tran et al., 2017, 2016), emcee (Foreman-Mackey,
Hogg, Lang, & Goodman, 2013), Pyro (Bingham et al., 2018), and easily integrated with
novel or bespoke Bayesian analyses. Where the aim of the probabilistic programming
languages is to make it easy to build and solve Bayesian models, the aim of the ArviZ
library is to make it easy to process and analyze the results from the Bayesian models. We
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Figure 1: Relationship between netCDF, az.InferenceData, and xarray

hope ArviZ will become a key Python tool for Bayesian data analysis by allowing users
to focus on problems from their domain knowledge and not on computational details.

Bayesian inference produces naturally high dimensional data. By storing each type of
data resulting from PPLs as an xarray (Hoyer & Hamman, 2017) dataset, ArviZ provides
labeled querying of the data, efficient algorithms, and persistent metadata. These datasets
are stored together on disk and in code using netCDF4 (Brown, Folk, Goucher, Rew, &
Dubois, 1993; R. Rew & Davis, 1990) groups, which are themselves built with HDF5,
and allows for well supported serialization. This functionality is implemented in the
InferenceData class (see Figure 1). In addition to the listed benefits of using netCDF and
xarray, by using a single data structure all statistical and visualization functions need to
be implemented only once.

In addition to common plots for Bayesian analysis including a trace plot and forest plot,
ArviZ implements other visualizations such as a plot for posterior predictive checks, a pair
plot, and a parallel coordinate plot (Gabry, Simpson, Vehtari, Betancourt, & Gelman,
2017). Additionally, it supports a number of statistical checks, such as calculating the
effective sample size, the r-hat statistic, Pareto-smoothed importance sampling leave-
one-out cross validation (PSIS-LOO-CV) (Vehtari, Gelman, & Gabry, 2015), and widely
applicable information criterion (WAIC) (Watanabe, 2013).
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Example Plots

Examples of ArviZ’s plotting functionality are shown in Figure 2 through Figure 5. Ad-
ditional examples can be found in the ArviZ documentation.
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Figure 2: Bivariate Hexbin Plot with marginal distributions

Figure 3: 2D Kernel Density Estimation
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Figure 4: Markov Chain Monte Carlo Trace

Figure 5: John Kruschke styled Posterior Distribution
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