
ArviZ a unified library for exploratory analysis of
Bayesian models in Python
Ravin Kumar4, Colin Carroll1, Ari Hartikainen2, and Osvaldo Martin3

1 Freebird Inc., United States 2 Aalto University, Department of Civil Engineering, Espoo, Finland 3
Instituto de Matemática Aplicada San Luis, UNSL-CONICET. Ejército de los Andes 950, 5700 San
Luis, Argentina 4 Carbon IT LLC, United States

DOI: 10.21105/joss.01143

Software
• Review
• Repository
• Archive

Submitted: 23 December 2018
Published: 15 January 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

While conceptually simple, Bayesian methods can be mathematically and numerically
challenging. Probabilistic programming languages (PPLs) implement functions to easily
build Bayesian models together with efficient automatic inference methods. This helps
separate the model building from the inference, allowing practitioners to focus on their
specific problems and leaving PPLs to handle the computational details for them (Bessiere,
Mazer, Ahuactzin, & Mekhnacha, 2013; Daniel Roy, 2015; Ghahramani, 2015). The
inference process generates a posterior distribution — which has a central role in Bayesian
statistics — together with other distributions like the posterior predictive distribution and
the prior predictive distribution. The correct visualization, analysis, and interpretation
of these distributions is key to properly answer the questions that motivate the inference
process.

When working with Bayesian models there are a series of related tasks that need to be
addressed besides inference itself:

• Diagnoses of the quality of the inference
• Model criticism, including evaluations of both model assumptions and model pre-

dictions
• Comparison of models, including model selection or model averaging
• Preparation of the results for a particular audience

Successfully performing such tasks are central to the iterative and interactive modeling
process. These tasks require both numerical and visual summaries to help statisticians
or practitioners analyze visual summaries. In the words of Persi Diaconis (Diaconis,
2011) “Exploratory data analysis seeks to reveal structure, or simple descriptions in data.
We look at numbers or graphs and try to find patterns. We pursue leads suggested by
background information, imagination, patterns perceived, and experience with other data
analyses”.

For these reasons we introduce ArviZ, a Python package for exploratory analysis of
Bayesian models. ArviZ aims to be a package that integrates seamlessly with estab-
lished probabilistic programming languages like PyStan (“Stan,” n.d.), PyMC (Salvatier,
Wiecki, & Fonnesbeck, 2016), Edward (Tran et al., 2017, 2016), emcee (Foreman-Mackey,
Hogg, Lang, & Goodman, 2013), Pyro (Bingham et al., 2018), and easily integrated with
novel or bespoke Bayesian analyses. Where the aim of the probabilistic programming
languages is to make it easy to build and solve Bayesian models, the aim of the ArviZ
library is to make it easy to process and analyze the results from the Bayesian models. We

Kumar et al., (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33),
1143. https://doi.org/10.21105/joss.01143

1

https://doi.org/10.21105/joss.01143
https://github.com/openjournals/joss-reviews/issues/1143
https://github.com/arviz-devs/arviz
https://doi.org/10.5281/zenodo.2540945
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01143

Figure 1: Relationship between netCDF, az.InferenceData, and xarray

hope ArviZ will become a key Python tool for Bayesian data analysis by allowing users
to focus on problems from their domain knowledge and not on computational details.

Bayesian inference produces naturally high dimensional data. By storing each type of
data resulting from PPLs as an xarray (Hoyer & Hamman, 2017) dataset, ArviZ provides
labeled querying of the data, efficient algorithms, and persistent metadata. These datasets
are stored together on disk and in code using netCDF4 (Brown, Folk, Goucher, Rew, &
Dubois, 1993; R. Rew & Davis, 1990) groups, which are themselves built with HDF5,
and allows for well supported serialization. This functionality is implemented in the
InferenceData class (see Figure 1). In addition to the listed benefits of using netCDF and
xarray, by using a single data structure all statistical and visualization functions need to
be implemented only once.

In addition to common plots for Bayesian analysis including a trace plot and forest plot,
ArviZ implements other visualizations such as a plot for posterior predictive checks, a pair
plot, and a parallel coordinate plot (Gabry, Simpson, Vehtari, Betancourt, & Gelman,
2017). Additionally, it supports a number of statistical checks, such as calculating the
effective sample size, the r-hat statistic, Pareto-smoothed importance sampling leave-
one-out cross validation (PSIS-LOO-CV) (Vehtari, Gelman, & Gabry, 2015), and widely
applicable information criterion (WAIC) (Watanabe, 2013).

Funding

Work by Osvaldo Martin was supported by CONICET-Argentina and ANPCyT-
Argentina (PICT-0218).

Acknowledgments

We thank the PyMC3 Community — especially Adrian Seyboldt, Junpeng Lao, and
Thomas Wiecki — as well as the Stan community — especially Allen Riddell . We also
would like to extend thanks to all the ArviZ contributors, and the contributors of the
libraries used to build ArviZ — particularly xarray, matplotlib, pandas, and numpy.

Example Plots

Examples of ArviZ’s plotting functionality are shown in Figure 2 through Figure 5. Ad-
ditional examples can be found in the ArviZ documentation.

Kumar et al., (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33),
1143. https://doi.org/10.21105/joss.01143

2

https://doi.org/10.21105/joss.01143

Figure 2: Bivariate Hexbin Plot with marginal distributions

Figure 3: 2D Kernel Density Estimation

Kumar et al., (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33),
1143. https://doi.org/10.21105/joss.01143

3

https://doi.org/10.21105/joss.01143

Figure 4: Markov Chain Monte Carlo Trace

Figure 5: John Kruschke styled Posterior Distribution

Kumar et al., (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33),
1143. https://doi.org/10.21105/joss.01143

4

https://doi.org/10.21105/joss.01143

References

Bessiere, P., Mazer, E., Ahuactzin, J. M., & Mekhnacha, K. (2013). Bayesian Program-
ming (1 edition.). Boca Raton: Chapman and Hall/CRC.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T.,
Singh, R., et al. (2018). Pyro: Deep Universal Probabilistic Programming. Journal of
Machine Learning Research. Retrieved from http://arxiv.org/abs/1810.09538

Brown, S. A., Folk, M., Goucher, G., Rew, R., & Dubois, P. F. (1993). Software
for portable scientific data management. Computers in Physics, 7(3), 304–308.
doi:10.1063/1.4823180

Daniel Roy. (2015). Probabilistic Programming. http://probabilistic-programming.org/wiki/Home.
http://probabilistic-programming.org/wiki/Home.

Diaconis, P. (2011). Theories of Data Analysis: From Magical Thinking Through Classical
Statistics. In Exploring Data Tables, Trends, and Shapes (pp. 1–36). John Wiley & Sons,
Ltd. doi:10.1002/9781118150702.ch1

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). Emcee: The MCMC
Hammer. PASP, 125, 306–312. doi:10.1086/670067

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2017). Visualization
in Bayesian workflow. arXiv:1709.01449 [stat]. Retrieved from http://arxiv.org/abs/
1709.01449

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature,
521(7553), 452–459. doi:10.1038/nature14541

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled Arrays and Datasets in Python.
Journal of Open Research Software, 5(1). doi:10.5334/jors.148

Rew, R., & Davis, G. (1990). NetCDF: An interface for scientific data access. IEEE
Computer Graphics and Applications, 10(4), 76–82. doi:10.1109/38.56302

Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic Programming in
Python Using PyMC3. PeerJ Computer Science, 2, e55. doi:10.7717/peerj-cs.55

Stan: A Probabilistic Programming Language | Carpenter | Journal of Statistical Soft-
ware. (n.d.). doi:10.18637/jss.v076.i01

Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M.
(2017). Deep Probabilistic Programming. arXiv:1701.03757 [cs, stat]. Retrieved from
http://arxiv.org/abs/1701.03757

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., & Blei, D. M. (2016).
Edward: A library for probabilistic modeling, inference, and criticism. arXiv:1610.09787
[cs, stat]. Retrieved from http://arxiv.org/abs/1610.09787

Vehtari, A., Gelman, A., & Gabry, J. (2015). Practical Bayesian Model Evaluation Us-
ing Leave-One-out Cross-Validation and WAIC. arXiv:1507.04544 [stat]. Retrieved from
http://arxiv.org/abs/1507.04544

Watanabe, S. (2013). A Widely Applicable Bayesian Information Criterion. Journal of
Machine Learning Research, 14, 867–897. Retrieved from http://arxiv.org/abs/1208.6338

Kumar et al., (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33),
1143. https://doi.org/10.21105/joss.01143

5

http://arxiv.org/abs/1810.09538
https://doi.org/10.1063/1.4823180
https://doi.org/10.1002/9781118150702.ch1
https://doi.org/10.1086/670067
http://arxiv.org/abs/1709.01449
http://arxiv.org/abs/1709.01449
https://doi.org/10.1038/nature14541
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/38.56302
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.18637/jss.v076.i01
http://arxiv.org/abs/1701.03757
http://arxiv.org/abs/1610.09787
http://arxiv.org/abs/1507.04544
http://arxiv.org/abs/1208.6338
https://doi.org/10.21105/joss.01143

	Summary
	Funding
	Acknowledgments
	Example Plots
	References

