
MIDI.jl: Simple and intuitive handling of MIDI data.
George Datseris1, 2 and Joel Hobson3

1 Max Planck Institute for Dynamics and Self-Organization 2 Department of Physics,
Georg-August-Universität Göttingen 3 Roadmunk Inc.

DOI: 10.21105/joss.01166

Software
• Review
• Repository
• Archive

Submitted: 29 December 2018
Published: 14 March 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Introduction

MIDI.jl is a Julia Bezanson, Edelman, Karpinski, & Shah (2017) package for reading,
writing and analyzing MIDI data. In this paper, we are briefly overviewing versions 1.1.0
or later for MIDI.jl.

MIDI (Music Instrument Digital Interface) is a data format created to transmit music data
across devices and computers. The actual MIDI interface is low-level, directly translating
all music information to and from byte chunks. MIDI.jl exposes all this low-level inter-
face, but it also builds a useable high-level interface on top of that. This makes reading
MIDI data intuitive and convenient, as we demonstrate in the following examples.

All functionality of MIDI.jl is well documented and hosted online: https://juliamusic.
github.io/JuliaMusic_documentation.jl/latest/. Besides documentation of functions
there are plenty of useful real world examples.

Intuitive and Simple Interface

The biggest strength of MIDI.jl is the ability to transform the raw MIDI data in a
format that is human-readable, intuitive and simple to use and manipulate. In addition,
the high-level interface does not require knowledge of which exact MIDI code corresponds
to which exact MIDI command.

What makes this possible is the data structures we have designed in order to provide
easier handling of MIDI files. The most important data structure is the Note/Notes.
A music note can be (in its most basic level) deconstructed into just four numbers: the
temporal position the note is played in, the duration, the pitch, and the intensity (strength
with which the note is played, also called velocity). A Note is a data structure that has
these four “quantities” as its “fields”. All of these are accessible immediately with e.g.,
Note.position and their values can be mutated in place.

These aspects can be deduced from the raw MIDI format with a lot of analyzing of bytes.
However, in MIDI.jl we provide a simple function:

getnotes(midi, args...)

which obtains all note-specific information and stores it as a vector of notes, which we
call Notes. This is very convenient, as to “identify” a note in the MIDI format, one needs
to first identify two different streams of bytes; one denotes the start and the other the
end of the note. This quickly becomes tedious, but getnotes does not expose all these
details to the user.

Datseris et al., (2019). MIDI.jl: Simple and intuitive handling of MIDI data.. Journal of Open Source Software, 4(35), 1166. https:
//doi.org/10.21105/joss.01166

1

https://doi.org/10.21105/joss.01166
https://github.com/openjournals/joss-reviews/issues/1166
https://github.com/JuliaMusic/MIDI.jl
https://doi.org/10.5281/zenodo.2591437
http://creativecommons.org/licenses/by/4.0/
https://www.midi.org/specifications
https://www.midi.org/specifications
https://juliamusic.github.io/JuliaMusic_documentation.jl/latest/
https://juliamusic.github.io/JuliaMusic_documentation.jl/latest/
https://doi.org/10.21105/joss.01166
https://doi.org/10.21105/joss.01166


Extensions

The easy-to-use high-level interface allows MIDI.jl to be extendable. For instance, in
another software package MusicManipulations.jl we provide general functions for ma-
nipulating (and further analyzing) music data. For example, the function quantize from
the package MusicManipulations.jl allows the user to quantize any Notes instance to
any grid.

This functionality is offered by Digital Audio Workstations, like the software Cubase,
but we offer ways to do it programmatically instead. Many other helpful functions are
contained in MusicManipulations.jl, and for further reading we point to the official
documentation of the JuliaMusic GitHub organization, which hosts both MIDI.jl and
MusicManipulations.jl, as well as other useful packages.

Scientific Application

Microtiming deviations are defined as temporal deviations below the phrase level, typ-
ically in the millisecond range. These have been studied extensively in the literature
and their importance and influence are debated strongly, see Madison, Gouyon, Ullén, &
Hörnström (2011), Butterfield (2010), Frühauf, Kopiez, & Platz (2013), Davies, Madison,
Silva, & Gouyon (2013), Senn, Kilchenmann, Von Georgi, & Bullerjahn (2016), Hofmann,
Wesolowski, & Goebl (2017) and references therein.

Qualitative studies of these microtiming deviations have been done extensively by Geisel
and coworkers Holger Hennig et al. (2011), H. Hennig (2014), Räsänen, Pulkkinen, Virta-
nen, Zollner, & Hennig (2015), Sogorski, Geisel, & Priesemann (2018). A crucial finding is
that the sequence of such deviations is not random but power-law correlated. In addition,
there is strong evidence that their distribution is normal (Gaussian).

In the following, we will compute the distribution of the microtiming deviations of a piano
track (played by a professional pianist) and show that indeed it approximates a normal
distribution.

We first load the notes of the piano track:

using MusicManipulations # Re-exports MIDI
midi = readMIDIFile(testmidi()) # test midi file

# Track number 4 is the piano track
piano = midi.tracks[4]
notes = getnotes(piano, midi.tpq)

533 Notes with tpq=960
Note F4 | vel = 69 | pos = 7427, dur = 181
Note A�4 | vel = 85 | pos = 7760, dur = 450
Note D5 | vel = 91 | pos = 8319, dur = 356
Note D4 | vel = 88 | pos = 8323, dur = 314
Note G�3 | vel = 88 | pos = 8327, dur = 358
Note A�4 | vel = 76 | pos = 8694, dur = 575
Note G4 | vel = 66 | pos = 9281, dur = 273
Note A�4 | vel = 94 | pos = 9594, dur = 666
Note F�3 | vel = 98 | pos = 10189, dur = 307
Note C4 | vel = 87 | pos = 10206, dur = 285
�

Datseris et al., (2019). MIDI.jl: Simple and intuitive handling of MIDI data.. Journal of Open Source Software, 4(35), 1166. https:
//doi.org/10.21105/joss.01166

2

https://juliamusic.github.io/JuliaMusic_documentation.jl/latest/
https://doi.org/10.21105/joss.01166
https://doi.org/10.21105/joss.01166


Figure 1: Histogram of the microtiming deviations of a simple piano recording.

We then compute their microtiming deviations. For the purpose of this article, we define
the microtiming deviations of a note as the distance of the position of a note from its
position when quantized on a 8th-note triplet grid (the pianist was playing triplets in the
above midi file).

We now compute those microtiming deviations, using the function quantize from Mu-
sicManipulations.jl

grid = 0:(1//3):1 # grid to quantize on, see documentation
qnotes = quantize(notes, grid)
mtds = positions(notes) .- positions(qnotes)
mtds_ms = mtds .* ms_per_tick(midi)

533-element Array{Float64,1}:
32.21150624999999
38.461499999999994
�

12.499987499999998
13.461524999999998

A plot of the histogram of these is presented in Figure 1. Even if produced with an
extremely small pool of data, the plot follows the existing evidence that the distribution
of the microtiming deviations follows a normal distribution.

Datseris et al., (2019). MIDI.jl: Simple and intuitive handling of MIDI data.. Journal of Open Source Software, 4(35), 1166. https:
//doi.org/10.21105/joss.01166

3

https://doi.org/10.21105/joss.01166
https://doi.org/10.21105/joss.01166


Conclusions

In conclusion, MIDI.jl is a useful package with intuitive usage, as we have demonstrated
by our simple application. In addition, it has plenty more use for scientific applications.
We currently have a manuscript titled Does it Swing? Microtiming Deviations and Swing
Feeling in Jazz under review, where we have used MIDI.jl and its extensions to not only
read but also manipulate microtiming deviations of human recordings in order to inquire
about the impact of microtiming deviations in the listening experience.

Related Software

There is existing software that offers functionality similar, but not identical, to MIDI.jl.
Some of these software are:

• mido
• python-midi
• pretty-midi (Raffel & Ellis, 2014).

Notable differences between MIDI.jl and these libraries include (but are not limited to):

1. The Notes data structure and getnotes functionality that exists in MIDI.jl. Al-
though the package pretty-midi contains similar functionality, it lacks the channel
property.

2. MIDI.jl is extended further into higher level applications like the ones offered by
MusicManipulations.jl or the module MotifSequenceGenerator that can create
specially random sequences of notes.

3. The fact that MIDI.jl is written for the Julia programming language.
4. The fact that MIDI.jl is the only package for handling MIDI data for the Julia

programming language.
5. MIDI.jl has proper, multi-page and multi-example documentation that is hosted

online and is automatically updated with every commit to the repository.
6. MIDI.jl does not currently have the so-called “piano roll” functionality, which plots

notes as in a Digital Audio Workstation.
7. Sequencer functionality, which has been implemented in the python-midi package,

is currently lacking in MIDI.jl.
8. Basic tempo estimation, which has been implemented in pretty-midi, is also absent

in MIDI.jl.

References

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach
to numerical computing. SIAM Review, 59(1), 65–98. doi:10.1137/141000671

Butterfield, M. (2010). Participatory discrepancies and the perception of beats in jazz.
Music Perception: An Interdisciplinary Journal, 27(3), 157–176. doi:10.1525/mp.2010.
27.3.157

Davies, M., Madison, G., Silva, P., & Gouyon, F. (2013). The effect of microtiming
deviations on the perception of groove in short rhythms. Music Perception: An Interdis-
ciplinary Journal, 30(5), 497–510. doi:10.1525/mp.2013.30.5.497

Datseris et al., (2019). MIDI.jl: Simple and intuitive handling of MIDI data.. Journal of Open Source Software, 4(35), 1166. https:
//doi.org/10.21105/joss.01166

4

https://github.com/mido/mido
https://github.com/vishnubob/python-midi
https://github.com/craffel/pretty-midi
https://doi.org/10.1137/141000671
https://doi.org/10.1525/mp.2010.27.3.157
https://doi.org/10.1525/mp.2010.27.3.157
https://doi.org/10.1525/mp.2013.30.5.497
https://doi.org/10.21105/joss.01166
https://doi.org/10.21105/joss.01166


Frühauf, J., Kopiez, R., & Platz, F. (2013). Music on the timing grid: The influence
of microtiming on the perceived groove quality of a simple drum pattern performance.
Musicae Scientiae, 17(2), 246–260. doi:10.1177/1029864913486793

Hennig, H. (2014). Synchronization in human musical rhythms and mutually interacting
complex systems. Proceedings of the National Academy of Sciences, 111(36), 12974–12979.
doi:10.1073/pnas.1324142111

Hennig, H., Fleischmann, R., Fredebohm, A., Hagmayer, Y., Nagler, J., Witt, A., Theis,
F. J., et al. (2011). The nature and perception of fluctuations in human musical rhythms.
PLoS One, 6(10), e26457. doi:10.1371/journal.pone.0026457

Hofmann, A., Wesolowski, B. C., & Goebl, W. (2017). The tight-interlocked rhythm
section: Production and perception of synchronisation in jazz trio performance. Journal
of new music research, 46(4), 329–341. doi:10.1080/09298215.2017.1355394

Madison, G., Gouyon, F., Ullén, F., & Hörnström, K. (2011). Modeling the tendency for
music to induce movement in humans: First correlations with low-level audio descriptors
across music genres. J. Exp. Psychol. Hum. Percept. Perform., 37(5), 1578–1594.
doi:10.1037/a0024323

Raffel, C., & Ellis, D. P. (2014). Intuitive analysis, creation and manipulation of MIDI
data with pretty_midi. In 15th international society for music information retrieval
conference late breaking and demo papers (pp. 84–93).

Räsänen, E., Pulkkinen, O., Virtanen, T., Zollner, M., & Hennig, H. (2015). Fluctuations
of hi-hat timing and dynamics in a virtuoso drum track of a popular music recording.
PLoS One, 10(6), e0127902. doi:10.1371/journal.pone.0127902

Senn, O., Kilchenmann, L., Von Georgi, R., & Bullerjahn, C. (2016). The effect of expert
performance microtiming on listeners’ experience of groove in swing or funk music. Front.
Psychol., 7, 1487. doi:10.3389/fpsyg.2016.01487

Sogorski, M., Geisel, T., & Priesemann, V. (2018). Correlated microtiming deviations
in jazz and rock music. (E. Hernandez-Lemus, Ed.)PLoS One, 13(1), e0186361. doi:10.
1371/journal.pone.0186361

Datseris et al., (2019). MIDI.jl: Simple and intuitive handling of MIDI data.. Journal of Open Source Software, 4(35), 1166. https:
//doi.org/10.21105/joss.01166

5

https://doi.org/10.1177/1029864913486793
https://doi.org/10.1073/pnas.1324142111
https://doi.org/10.1371/journal.pone.0026457
https://doi.org/10.1080/09298215.2017.1355394
https://doi.org/10.1037/a0024323
https://doi.org/10.1371/journal.pone.0127902
https://doi.org/10.3389/fpsyg.2016.01487
https://doi.org/10.1371/journal.pone.0186361
https://doi.org/10.1371/journal.pone.0186361
https://doi.org/10.21105/joss.01166
https://doi.org/10.21105/joss.01166

	Introduction
	Intuitive and Simple Interface
	Extensions
	Scientific Application
	Conclusions
	Related Software
	References

