
The Biddy BDD package
Robert Meolic1

1 Faculty of Electrical Engineering and Computer Science, University of Maribor

DOI: 10.21105/joss.01189

Software
• Review
• Repository
• Archive

Submitted: 15 January 2019
Published: 11 February 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

A Binary Decision Diagram (BDD) is a data structure used in different areas including
but not limited to the design, testing, optimization, and verification of digital circuits,
communications protocols, and distributed systems (Bryant, 1986). There exist many
different types of BDDs intended for different applications. The most notable types are
used to represent Boolean functions and combination sets. For these purposes, BDDs can
be very efficient, for example, they enable the representation and manipulation of set of
sparse cubes with 1047 cubes (Minato, 2013).

In a BDD, every internal node contains a variable while leafs contain constants 0 and 1,
respectively. For a Reduced Ordered Binary Decision Diagram (ROBDD), each edge to
internal node n with variable var(n), left successor else(n), and right successor then(n)
corresponds to the Boolean function f(n) that is calculated as:

f(n) = var(n) & else(n) + var(n) & then(n)

For the ROBDD in Figure 1 this is applied as follows: F3[088] = x1 & (x3 & 0+x3 & 1)+
x1 & (x2 & (x3 & 1 +x3 & 0) +x2 & 0). The same result can be obtained if every path
starting in the root and leading to a leaf with constant 1 is considered to be a product of
variables in which a negative literal is included if the path continues in the else successor
and a positive literal is included if the path continues in the then successor. The resulting
Boolean function is a sum of the obtained products. In this way, for the ROBDD in
Figure 1 we directly obtain a minimal sum-of-products form, but in general, the result is
not a minimal form. For the explanation of other types of BDDs we refer to the given
references.

Figure 1: Representation of Boolean function F3[088] = x1 & x3 + x1 & x2 & x3
with different types of BDDs. From left to right there are an ROBDD, an ROBDD
with complemented edges, a 0-sup-BDD, a 0-sup-BDD with complemented edges, and a
tagged 0-sup-BDD.

Meolic, (2019). The Biddy BDD package. Journal of Open Source Software, 4(34), 1189. https://doi.org/10.21105/joss.01189 1

https://doi.org/10.21105/joss.01189
https://github.com/openjournals/joss-reviews/issues/1189
https://github.com/meolic/biddy
https://doi.org/10.5281/zenodo.2561641
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01189


Boolean functions are primarily used in digital circuit design where a thousand and more
variables are not unusual. It is impossible to represent such large Boolean functions
with vectors and similar explicit representations of the truth table. Strings are also
not an option because they are not canonical. On the other hand, many huge Boolean
functions of practical importance have a managable representation with BDDs. Nowadays,
however, logic synthesis is not the only, or even not the main, target for Boolean functions
and BDDs. They are also used as characteristic functions of sets and relations, which
enables the encoding of combinatorial problems and their symbolic solution (Knuth, 2009)
(Minato, 2013) (Meolic & Brezočnik, 2018). A very special method that has profited a
lot from BDDs is model checking (Chaki & Gurfinkel, 2018). Application areas where
BDDs can also be applied are approximate string matching, fault tree analysis, scheduling
algorithms, security algorithms, reversible computing, and many others.

An efficient implementation of algorithms for BDDs is a rather complicated task, but
several free BDD packages are avaliable online. Herein we describe the cross-platform
Biddy BDD package (Meolic, 2012), one of the oldest continually developed of these
BDD packages. From version 1.8.2, many standard features are implemented, such as
automatic garbage collection, complemented edges, and a management system. Dynamic
variable ordering with a sifting algorithm and an exhaustive search over all the possible
variable orderings are provided, too. Various statistics about global properties and the
individual Boolean functions are available.

Some distinguishing properties of the Biddy BDD package are:

• can be built on various platforms using native environments, including gcc, mingw,
and Visual Studio;

• it follows a strict implementation style;
• it has a refined C API;
• it offers a uniform support for classical reduced ordered BDDs (ROBDDs) and

zero-suppressed BDDs (0-sup-BDDs);
• at this moment, Biddy is the only package thoroughly supporting the tagged zero-

suppressed BDDs (Meolic, 2016) (Dijk, Wille, & Meolic, 2017).

The Biddy BDD package is a part of the Biddy project that also focuses on the visual-
ization of BDDs. The application BDD Scout, which is bundled with the Biddy BDD
package, is an interactive tool (Figure 2). Its key features are:

• the creation of a BDD from a Boolean expression,
• node manipulation and variable reordering in the displayed BDD,
• conversion between the supported types of BDDs,
• exports to LaTeX, and
• integrated Tcl scripting.

These features make BDD Scout a unique tool for teaching and exploring properties of
BDDs. For an example, check the generated BDD Encyclopedia (Meolic, 2019a).

Meolic, (2019). The Biddy BDD package. Journal of Open Source Software, 4(34), 1189. https://doi.org/10.21105/joss.01189 2

https://doi.org/10.21105/joss.01189


Figure 2: An annotated screenshot from BDD Scout

In conclusion, the Biddy BDD package is free software to be used in projects that need to
manipulate Boolean functions or combination sets. It is a complete and efficient product
suitable for many academic and commercial settings. The binary executables, the user
manual, and the other documentation can be obtained from Biddy’s Homepage (Meolic,
2019b).

Acknowledgements

The development of the Biddy BDD package and BDD Scout application so far was
supported by University of Maribor, Faculty of Electrical Engineering and Computer
Science.

References

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
transactions on computers, 35(8), pp. 677-691, 1986. doi:10.1109/TC.1986.1676819

Chaki, S., & Gurfinkel, A. (2018). BDD-based symbolic model checking. In handbook of
model checking, springer, pp. 219-245, 2018. doi:10.1007/978-3-319-10575-8_8

Dijk, T. van, Wille, R., & Meolic, R. (2017). Tagged BDDs: Combining reduction rules
from different decision diagram types. In proc. FMCAD 2017, pp. 108-115, 2017. doi:10.
23919/FMCAD.2017.8102248

Knuth, D. E. (2009). The art of computer programming, Volume 4, Fascicle 1: Bitwise
tricks and techniques; Binary decision diagrams. Addison-Wesley Professional, 2009.

Meolic, R. (2012). Biddy - a multi-platform academic BDD package. Journal of software,
7(6), pp. 1358-1366, 2012. doi:10.4304/jsw.7.6.1358-1366

Meolic, R. (2016). Implementation aspects of a BDD package supporting general decision
diagrams. University of Maribor, Tech. rep., 2016. Retrieved January 15, 2019, from
https://dk.um.si/IzpisGradiva.php?id=68831&lang=eng

Meolic, (2019). The Biddy BDD package. Journal of Open Source Software, 4(34), 1189. https://doi.org/10.21105/joss.01189 3

https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.4304/jsw.7.6.1358-1366
https://dk.um.si/IzpisGradiva.php?id=68831&lang=eng
https://doi.org/10.21105/joss.01189


Meolic, R. (2019a). BDD Encyclopedia. Retrieved January 15, 2019, from http:
//svn.savannah.nongnu.org/viewvc/*checkout*/biddy/bddscout/ENCYCLOPEDIA/
bddencyclopedia.html

Meolic, R. (2019b). Biddy’s homepage. Retrieved January 15, 2019, from http://biddy.
meolic.com/

Meolic, R., & Brezočnik, Z. (2018). Flexible job shop scheduling using zero-suppressed
binary decision diagrams. Advances in production engineering and management, 13(4),
pp. 373-388, 2018. doi:10.14743/apem2018.4.297

Minato, S. (2013). Techniques of BDD/ZDD: Brief history and recent activity. IEICE
trans. on information and systems, E96D(7), pp. 1419-1429, 2013. doi:10.1587/transinf.
E96.D.1419

Meolic, (2019). The Biddy BDD package. Journal of Open Source Software, 4(34), 1189. https://doi.org/10.21105/joss.01189 4

http://svn.savannah.nongnu.org/viewvc/*checkout*/biddy/bddscout/ENCYCLOPEDIA/bddencyclopedia.html
http://svn.savannah.nongnu.org/viewvc/*checkout*/biddy/bddscout/ENCYCLOPEDIA/bddencyclopedia.html
http://svn.savannah.nongnu.org/viewvc/*checkout*/biddy/bddscout/ENCYCLOPEDIA/bddencyclopedia.html
http://biddy.meolic.com/
http://biddy.meolic.com/
https://doi.org/10.14743/apem2018.4.297
https://doi.org/10.1587/transinf.E96.D.1419
https://doi.org/10.1587/transinf.E96.D.1419
https://doi.org/10.21105/joss.01189

	Summary
	Acknowledgements
	References

