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Summary

Populations of neurons exhibit time-varying fluctuations in their aggregate activity. These
data are often collected using common magneto- and electrophysiological methods, such
as magneto or electroencephalography (M/EEG), intracranial EEG (iEEG) or electrocor-
ticography (ECoG), and local field potential (LFP) recordings (Buzsáki, Anastassiou, &
Koch, 2012). While there are existing Python tools for digital signal processing (DSP),
such as scipy.signal, neural data exhibit specific properties that warrant specialized anal-
ysis tools focused on idiosyncrasies of neural data. Features of interest in neural data
include periodic properties—such as band-limited oscillations (Buzsáki & Draguhn, 2004)
and transient or ‘bursty’ events—as well as an aperiodic signal that is variously referred
to as the 1/f-like background (Freeman & Zhai, 2009; Miller, Sorensen, Ojemann, & Nijs,
2009), or noise (Voytek et al., 2015), or scale-free activity (He, 2014), and that may carry
information about the current generators, such as the ratio of excitation and inhibition
(Gao, Peterson, & Voytek, 2017). NeuroDSP is a package specifically designed to be used
by neuroscientists for analyzing neural time series data, in particular for examing their
time-varying properties related to oscillatory and 1/f-like components.
NeuroDSP is accompanied by a documentation site that includes detailed tutorials for each
of the modules, which are described below, as well as suggested workflows for combining
them.
Modules in NeuroDSP include:

• filt : Filter data with bandpass, highpass, lowpass, or bandstop filters, using FIR
or IIR filters.

• burst : Detect bursting oscillations in neural signals, for example using the dual
threshold algorithm (Feingold, Gibson, DePasquale, & Graybiel, 2015). For a more
extensive time-domain toolbox for detecting contiguous rhythmic cycles and cal-
culating cycle-by-cycle features, please the companion toolbox, ByCycle (Cole &
Voytek, 2018a, 2018b).

• rhythm : Detect rhythmic patterns in neural time series. Algorithms to do so include
the lagged coherence measure for quantifying the presence of rhythms (Fransen, Ede,
& Maris, 2015), and the sliding window matching (SWM) algorithm for identifying
recurring patterns in a neural signal, like the shape of an oscillatory waveform (Gips
et al., 2017).

• spectral : Compute spectral domain features, including power spectral estima-
tion, mortlet wavelet transforms and spectral coefficient of variation (SCV).
For parametrizing the resulting spectrum, please see the companion spectral
parametrization toolbox, fitting oscillations and one-over-f or FOOOF (Haller et
al., 2018).
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• timefrequency : Estimate instantaneous measures of oscillatory activity, including
instantaneous measures for calculating the amplitude, frequency, and phase from
narrowband-filtered, putative oscillations.

• sim : Simulate neural time series, including oscillations, that can vary in their wave-
form shape and stationarity, aperiodic signals, simulated with various stochastic
models, transient events, as well as utilities to combine across various components.

• plts : Plotting functions.

Statement of Need

NeuroDSP is an open-source Python package for time-series analyses of neural data, includ-
ing implementations of relevant DSP utilities as well as implementations of a collection of
algorithms and approaches that have been developed specifically for neural data analysis.
By design, NeuroDSP offers a lightweight architecture in which functions take in time-series
directly, thus offering a flexible toolbox for custom analysis of a broad range of neural
data. This approach complements, and can be used in conjunction with, related toolboxes
such as MNE (Gramfort et al., 2014) that are more focused on data management and
multi-channel analyses. NeuroDSP offers implementations of a distinct set of methods,
with different use cases from other tools, and can easily be integrated with frameworks
such as MNE or with other custom workflows. NeuroDSP also offers a developed module
for simulating realistic field potential data, which is used for testing the properties of
methods against synthetic data for which ground truth parameters are known. Note that
these simulations are designed to mimic the statistics of electrophysiological data—and
properties of transient, non-stationary, non-sinusoidal rhythms—but they should not be
over-interpreted as biophysically realistic.
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