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Summary

ChiRP is a Monte Carlo Markov Chain (MCMC) implementation of Chinese Restaurant
Process (CRP) mixtures in R. CRP mixtures (Blackwell & MacQueen, 1973; Ferguson,
1973) are a class of Bayesian nonparametric models that can be used for robust regression
modeling and clustering problems.
These are common tasks in biomedical research. However, regression often involves para-
metric assumptions (e.g. normality, linearity, constant variance). Similarly, clustering
often involves pre-specifying the number of clusters - typically unknown to the researcher.
Flexible machine learning methods exist for such problems, but they focus on predictive
accuracy, making them inadequate for biomedical research applications where inference
and interval estimation are of interest.
CRP mixtures work by partitioning a dataset into similar clusters - each associated with
a locally parametric regression model. Unlike traditional clustering procedures, CRP
mixtures allow for infinitely many clusters - thus side-stepping the need to pre-specify the
number of clusters. Predictions are formed by ensembling over the local cluster-specific
regression models. This fully Bayesian procedure produces an entire posterior distribution
for both the cluster assignments and predictions - allowing for both point and interval
estimation.

Outcome Types and Model Output

Suppose we are given training data with n subjects DT = (Yi, Xi)i=1:n. Here, Yi is the
scalar outcome/label and Xi is a p × 1 vector containing either binary or continuous
features. ChiRP trains a CRP model and yields the following:

1. In-sample posterior mean predictions (Ŷi)i=1:n from a nonparametric CRP regres-
sion of Y on X.

2. Out-of-sample posterior mean predictions on an un-labeled test set (X̃i)1:m,
( ˆ̃Yi)i=1:m.

3. Latent posterior mode cluster membership for both training and testing subjects.

ChiRP is not limited to producing the posterior means and modes above. It returns
a posterior distribution over each subject’s predicted outcome and cluster membership
- allowing the user to compute posterior point and interval estimates for any desired
estimand of interest.
ChiRP implements different local cluster-specific regressions depending on the outcome
type:
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1. Zero-inflated, semi-continuous outcomes are modeled using cluster-specific zero-
inflated regressions (See Oganisian, Mitra, & Roy, 2018)

2. Continuous outcomes are modeled using cluster-specific linear regressions (See Han-
nah, Blei, & Powell, 2011).

3. Binary outcomes are modeled using cluster-specific logistic regressions.

Simulated Example

The figure illustrates a CRP mixture of linear regressions using outcome data gen-
erated from a sine wave. The first panel shows a flexible posterior mean prediction
in blue for in-sample data. Posterior mean prediction for the test set is shown
in red. We plot 100 posterior draws from the predictive distribution for each Xi

to display the uncertainty around the posterior mean prediction. Percentiles of
these draws can be used to form credible intervals around the predicted mean.

Panel B gives some intuition about why a locally linear regression works so well with such
complex data. The CRP model induces a clustering of points that are similar to each
other in terms the linear model parameters. The CRP discovers four distinct clusters -
each with its own linear regression. These clusters are indicated by color. Predictions
are generated by averaging predictions from these cluster-specific models.

Panel C represents each subject in the training set as a node in a graph. The line
connecting any two nodes is inversely proportional to the posterior probability of two
subjects being clustered together. Colors indicate the posterior mode assignment. For
example, the blue and green points are almost never clustered together. From Panel B it
is obvious why this is: the blue and green points are far apart in (X,Y ) space. Note that
some black points in Panel C are very close to the red points. This indicates that cluster
assignment for these subjects are highly uncertain. They could belong to the red group
or black group with significant probability. These points are the same points in Panel B
around X = 0 - the boundary of red and black.
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