
Python Sorted Containers
Grant Jenks1

1 NoneDOI: 10.21105/joss.01330

Software
• Review
• Repository
• Archive

Submitted: 31 January 2019
Published: 03 June 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The standard library of popular languages like C++, Java, and C# provide sorted con-
tainer data types based on binary tree data structures. While Python (1995) has risen
in popularity, the Standard Library still lacks these common data types. Part of the
challenge has been Python’s rich object model which makes binary trees implemented
in Python slow in terms of both memory and processor usage. To overcome the over-
head of the interpreter, C-extensions are used by the Python core developers. In doing
so, flexibility is tradeoff for performance. The goal of the Python core developers is to
provide the right set of high-level APIs so that algorithms and data structures can be
implemented efficiently. The Python Sorted Containers library uses Python’s high-level
APIs to efficiently implement sorted container data structures.

Python’s collections data structures are based on three data types: sequences, mappings,
and sets. These data types are implemented and most commonly used as list, dictionary,
and set objects. The Python Sorted Containers library introduces new variants of these
three data types that are each sorted: sorted list, sorted dictionary, and sorted set. In
each case, the original semantics are extended to preserve sorted order of the contained
elements with respect to mutating operations. When unable to preserve the sorted order
constraint, the functionality is either non-existent or an error is raised from the library.
Python’s “sorted” built-in function also supports a “key” parameter which specifies a
callable used to extract a comparison key from elements. When initializing a sorted
container data type, the key paramemter is likewise supported.

Internally, Python Sorted Containers uses a list of sublists data structure that is like a
B-tree contstrained to two levels of nodes. The maximum of each sublist is maintained in
a separate list. To lookup an element, the list of maximums is bisected using the “bisect”
module in the Standard Library. Using the bisected maximums index, the corresponding
sublist is bisected to find the index of the desired element. To index the k’th element,
a separate positional index, known as the “Jenks” index, is built and maintained. The
positional index is like the order statistic of a binary tree densely packed into a list.
By maintaining the size of the sublists as proportional to the 3

√
n the amortized time

complexity of all operations is O(3
√
n). This bound works well for up to billions of elements

which often exhausts all available memory.

Python Sorted Containers overlaps and extends the “bisect” and “heapq” modules pro-
vided in the Standard Library. In contrast to the function-oriented interface provided
by these modules, Sorted Containers provides an object-oriented interface. Externally,
SQLite in-memory indexes, Pandas DataFrame indexes, and Redis sorted sets provide
similar functionality. These data structures are applied in priority queue, multiset, near-
est neighbors, intervals, and ranking algorithms. Sorted Containers is used by scientific
open source projects such as: Angr (2016), a binary analysis platform from UC Santa
Barbara; Astropy (2018), a community Python package for astronomy; Dask Distributed
(2015), a library for dynamic task scheduling by Anaconda; Trio (2017), an asynchronous
I/O library; and Zipline (2016), an algorithmic trading library by Quantopian.

Jenks, (2019). Python Sorted Containers. Journal of Open Source Software, 4(38), 1330. https://doi.org/10.21105/joss.01330 1

https://doi.org/10.21105/joss.01330
https://github.com/openjournals/joss-reviews/issues/1330
https://github.com/grantjenks/python-sortedcontainers
https://doi.org/10.5281/zenodo.2584337
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01330

Acknowledgements

Thank you to Daniel Stutzbach for the “blist” (2014) software project to which Sorted
Containers owes much of the original interface design.

Thank you to Raymond Hettinger for the “SortedCollection” recipe (2010) which origi-
nally inspired the support and design of the “key” parameter feature.

Thank you to Manfred Moitzi for the “bintrees” software project (2017) which motivated
the range-based tree traversal interfaces.

Thank you to Dan Stromberg for the benchmark comparisons of less common binary tree
data structures (2019) like treap, splay, and scapegoat.

Thank you to the open source community that has contributed bug reports, documenta-
tion improvements, and feature guidance in development of the project.

References

Developers, P. C. (1995). Python programming language. Python Software Foundation.
Retrieved from https://www.python.org/

Hebert, E., Sanderson, S., Jevnik, J., Frank, R., Wiecki, T., & others. (2016). Zipline, a
pythonic algorithmic trading library. http://www.zipline.io/.

Hettinger, R. (2010). SortedCollection (python recipe). http://code.activestate.com/
recipes/577197-sortedcollection/.

Moitzi, M. (2017). Bintrees: Binary tree package. https://github.com/mozman/bintrees.

Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M., Conseil,
S., Shupe, D. L., et al. (2018). The Astropy Project: Building an Open-science Project
and Status of the v2.0 Core Package, 156, 123. doi:10.3847/1538-3881/aabc4f

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task
scheduling. In K. Huff & J. Bergstra (Eds.), Proceedings of the 14th python in science
conference (pp. 126–132). doi:10.25080/Majora-7b98e3ed-013

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen, J.,
et al. (2016). SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis.
In IEEE symposium on security and privacy.

Smith, N. J. (2017). Trio: Async programming for humans and snake people. https:
//trio.readthedocs.io/.

Stromberg, D. (2019). Dictionary-like trees. http://stromberg.dnsalias.org/~dstromberg/
datastructures/.

Stutzbach, D. (2014). Blist: An asymptotically faster list-like type for python. http:
//stutzbachenterprises.com/blist/.

Jenks, (2019). Python Sorted Containers. Journal of Open Source Software, 4(38), 1330. https://doi.org/10.21105/joss.01330 2

https://www.python.org/
http://www.zipline.io/
http://code.activestate.com/recipes/577197-sortedcollection/
http://code.activestate.com/recipes/577197-sortedcollection/
https://github.com/mozman/bintrees
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.25080/Majora-7b98e3ed-013
https://trio.readthedocs.io/
https://trio.readthedocs.io/
http://stromberg.dnsalias.org/~dstromberg/datastructures/
http://stromberg.dnsalias.org/~dstromberg/datastructures/
http://stutzbachenterprises.com/blist/
http://stutzbachenterprises.com/blist/
https://doi.org/10.21105/joss.01330

	Summary
	Acknowledgements
	References

