
LGP: A robust Linear Genetic Programming
implementation on the JVM using Kotlin.
Jed Simson1

1 University of Waikato, Waikato, New Zealand
DOI: 10.21105/joss.01337

Software
• Review
• Repository
• Archive

Submitted: 09 February 2019
Published: 27 October 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The desire for a system which can automatically craft computer programs has been known
in the machine learning community for some time. Friedberg (1958) experimented with a
system that solved problems by randomly changing instructions in a program and favouring
those changes which most frequently achieved a positive result.
Linear Genetic Programming (LGP) (Brameier & Banzhaf, 2007) is a paradigm of genetic
programming that employs a representation of linearly sequenced instructions in automatically
generated programs.
There are two primary features which differentiate LGP from a traditional tree- based approach:
first, LGP programs exhibit a unique graph-based data flow due to the way the contents of
a particular register may be used multiple times during a programs execution. This leads
to program graphs with higher variability thus enabling program solutions which are more
compact in comparison to tree-based solutions to evolve.
Secondly, special non-effective code coexists with a program’s effective code as a result of
the imperative structure. Non-effective code refers to instructions within an LGP program
which do not impact the program output. These non-effective instructions guard the effective
instructions from disruption caused by the genetic operator application and allows variations
to remain neutral in terms of a fitness change.
LGP is a Kotlin package for performing Linear Genetic Programming, with a focus on modern
design, ease of use, and extensibility. The usage of the Kotlin language enables a functional
and modern API that can make full usage of the Java Virtual Machine and rich Java package
ecosystem. The LGP core package is designed for the generic case, offering a rich set of
extensible components that can be adapted to the particular problem and a set of different
core implementations of various LGP algorithms. A sub-package LGP-lib provides implemen-
tations for core components, including program generation, program instruction operations,
and base program definitions. A set of example usages is available to aid users in getting
started solving problems.
The creation of LGP was motivated by the apparent lack of open-source Linear Genetic Pro-
gramming implementations in an attempt to promote its usage. The project has intentions
for use at the University of Waikato for future student projects and is currently in the pro-
cess of being used for a research project in the image processing domain at the Max Planck
Institute of Molecular Cell Biology and Genetics. The goal of LGP is to facilitate the usage
of Linear Genetic Programming in solving problems in machine learning, as an alternative to
other techniques.

Simson, (2019). LGP: A robust Linear Genetic Programming implementation on the JVM using Kotlin.. Journal of Open Source Software,
4(42), 1337. https://doi.org/10.21105/joss.01337

1

https://doi.org/10.21105/joss.01337
https://github.com/openjournals/joss-reviews/issues/1337
https://github.com/JedS6391/LGP
https://doi.org/10.5281/zenodo.3519400
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01337


References

Brameier, M. F., & Banzhaf, W. (2007). Linear genetic programming. Springer Science &
Business Media.
Friedberg, R. M. (1958). A learning machine: Part i. IBM J. Res. Dev., 2(1), 2–13.
doi:10.1147/rd.21.0002

Simson, (2019). LGP: A robust Linear Genetic Programming implementation on the JVM using Kotlin.. Journal of Open Source Software,
4(42), 1337. https://doi.org/10.21105/joss.01337

2

https://doi.org/10.1147/rd.21.0002
https://doi.org/10.21105/joss.01337

	Summary
	References

