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Summary

Linear and logistic regression are essential workhorses of statistical analysis, whose Bayesian
treatment has received much recent attention (Bishop, 2006; Gelman et al., 2013; Hastie,
Tibishirani, & Friedman, 2011; Murphy, 2012). Using Bayesian statistics for linear and lo-
gistic regression allows specifying prior beliefs over certain model parameters, which makes
it particularly useful for small and/or high-dimensional datasets. Bayesian regression further-
more provides an estimate of the uncertainty about estimated regression coefficients, as well
as uncertainty about predictions arising from the regression. Both are again particularly im-
portant for small and/or high-dimensional datasets, as the use of such data might result in
highly uncertain predictions, and allow the user to be explicit about this uncertainty.
VBLinLogit is a MATLAB/Octave library that provides a variational Bayesian implementa-
tion of Bayesian models for both linear and logistic regression. It uses variational Bayesian
inference (Beal, 2003; Bishop, 2006; Murphy, 2012) as a method for approximating Bayesian
computations, as these computations would otherwise be intractable for the used regression
models. It is significantly faster than Markov Chain Monte Carlo (MCMC) methods (Gilks,
Richardson, & Spiegelhalter, 1995), another form of approximate Bayesian inference, which
makes it applicable to high-dimensional problems for which standard MCMC might be too
slow.
A specific regression variant implemented by this library is automatic relevance determination
(ARD), which uses a model that automatically determines which data dimensions are relevant
for the regression, discarding the others (Wipf & Nagarajan, 2008). It does so without a sepa-
rate “validation set”, as would be required by alternative methods, like the Lasso (Tibshirani,
1996). Therefore, it can be used when the small size of the dataset makes the use of such a
separate “validation set” prohibitive.
The scripts encompassing the library were written to be light-weight and thus do not depend
on external libraries. They include variants with and without ARD. Their use is deliberately
kept simple. The core arguments to the regression scripts are a matrix of predictors, as
well as a vector of response variable. Additional parameters specifying the prior and hyper-
prior parameters are usually optional. Details about the specifics of the used models, the
variational Bayes derivation, and detailed use of the scripts included in the library can be
found in Drugowitsch (2013).

Additional details, novelty, and relation to other approaches

Use of the library is particularly beneficial if the data is sparse. Sparsity can occur either if
few training examples are available, or if the dimensionality of the input (i.e., the number
of dependent variables) is large. Data sparsity becomes particularly challenging if the input
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dimensionality exceeds the number of training examples. In this case, the regression is under-
determined: multiple solutions exist that fit the training set equally well. However, only some
of them yield good predictions on a separate test set.
A common approach to handle underdetermination is to make additional assumptions about
potential solutions. Specifically, it is commonly assumed that the regression weights (i.e.,
the regression coefficients) that form the solution and describe how the output (i.e., the
independent variable) varies with the inputs, take small values. This is known as regularization.
Regularization isn’t only beneficial if the regression is underdetermined, but also if the data is
noisy. The different methods discussed here differ in how exactly they introduce regularization
by making different a-priori assumptions about the regression weights.
The Bayesian methods provided in this library implement two different sets of assumptions.
They either assume that all regression coefficients are equally small and tunes how small they
are overall (that’s the variant without ARD), or they adjust “smallness” of each regression
coefficient individually (that’s the variant with ARD). The latter is particularly beneficial if the
data includes some spurious input dimensions that don’t determine the outputs. In this case,
the ARD variant might be able to set the associated regression weights to zero, effectively
ignoring these input dimensions. As mentioned further above, another benefit of Bayesian
regularization is that it doesn’t need a separate “validation set” to tune its parameters. How
well this actually works depends on how close the data matches the assumptions underlying
the different methods. Thus, different regularization approaches might work better or worse
on different datasets. There currently exists no single best method that works best for all
datasets.
More specifically, the models underlying variational Bayesian linear and logistic regression
implemented in this library are Bayesian hierarchical models with priors on the regression coef-
ficient, as well as hyper-priors on the prior parameters. For the ARD variants, the hyper-priors
are assigned to each of the regressors separately, which supports pruning eventually irrele-
vant coefficients (Wipf & Nagarajan, 2008). This happens without the need for a separate
validation set, unlike comparable sparsity-inducing methods like the Lasso (Tibshirani, 1996).
Bishop (2006) describes ARD only in the context of type-II maximum likelihood (MacKay,
1992; Neal, 1996; Tipping, 2001), in which case the (hyper-)parameters are tuned by maximiz-
ing the marginal likelihood (or model evidence). The library instead provides implementations
for the full Bayesian treatment, that finds the ARD hyper-posteriors by variational Bayesian
inference.
Since release R2017a, MATLAB also provides some functions for Bayesian linear regression,
but none for Bayesian logistic regression. For linear regression, it provides variants with and
without variable selection. Neither of the variants without variable selection use or infer
hyper-priors. Therefore, they do not support inferring prior parameters in hierarchical models,
unlike this library. The variants with variable selection either use a straight-foward Bayesian
formulation of Lasso, or Stochastic Search Variable Selection (SSVS) (George & McCulloch,
1993). Both are different from ARD, and the advantages of either method remain to be
clarified.
Some of the scripts provided by this library have been included in the pmtk3 software accom-
panying Murphy (2012). Part of the library has furthermore been used for various scientific
publications across multiple domains (e.g., Kanitscheider, Coen-Cagli, Kohn, & Pouget, 2015;
Oh et al., 2016; Ruxanda, Zahfir, & Muraru, 2018; Wang & Rehder, 2017).
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