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The paradigm of data-driven science is revolutionising the materials discovery process. There
are now many databases containing experimental and calculated materials properties and
extensive codes available for applying data mining, machine learning, and other statistical
approaches (a well-maintained list is available here). While we use these tools to push forward
in the quest to learn as much as we can from existing materials, it is becoming clear that the
search space for new materials remains relatively uncharted.
The discovery of new chemical compounds (combinations of elements arranged in a particular
way in space) underpins materials discovery. The smact Python library is designed to facilitate
a top-down approach where sets of element combinations are generated then screened using
chemical filters. It is possible to screen for candidates that make “chemical sense” according
to the well-established principles of electron valence and charge neutrality. The methodology
is inspired by the seminal work of Goodman and Pamplin who carried out similar procedures
by hand, predicting the existence of new semiconductors by analogy with existing compounds
(Goodman, 1958; Pamplin, 1964).
Once a set of compositions is generated, further functions built into smact can be used to
filter for candidates with target properties using data-driven models. These functions can
predict key electronic structure properties such as the optical band gap using the solid-state
energy scale (Pelatt, Ravichandran, Wager, & Keszler, 2011), evaluate sustainability metrics
using the Herfidahl-Hirschman Index of resource availability (Gaultois et al., 2013), and predict
stability using a statistical oxidation states model (D. W. Davies, Butler, Isayev, & Walsh,
2018).
Core components: The element and species classes are at the heart of smact. Elements
are elements of the periodic table. Species are elements in a particular oxidation state and
(optionally) coordination environment. These classes provide access to tabulated data and
the properties of these objects are leveraged by the screening functions. For example, atomic
radii can be used in the application of radius-ratio rules (Goldschmidt, 1929) and electronega-
tivities can be used to estimate electronic properties (Nethercot, 1974). In a typical workflow,
screening functions are applied to lists of elements or species sets. While other chemistry
toolkits such as OpenBabel (O’Boyle et al., 2011), the Atomic Simulation Environment (ASE)
(Larsen et al., 2017) and Pymatgen (Ong et al., 2013) can also be used to access tabulated
element data, smact is distinctive in that it primarily deals with chemical composition and
associated properties, as opposed to molecular or crystal structure.
High-throughput workflows: The number of possible element combinations is enormous,
exceeding 4×1012 for four-component compounds (D. W. Davies et al., 2016). For this reason,
functions from smact can be applied at low computational cost to facilitate the screening of
vast areas of chemical space rapidly on a desktop computer. This is made possible by (i) a
data_loader module which implements a data-caching system to avoid a large amount of I/O
and (ii) using Python’s built-in multiprocessing library, as shown in the example workflows.
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Interfacing to machine learning: Materials design is begining to benefit from the develop-
ment of powerful machine learning techniques, with many supervised learning models being
built to predict important properties (K. T. Butler, Davies, Cartwright, Isayev, & Walsh,
2018). The smact library can provide a large, unseen chemical space to which trained models
can be applied. The compositions generated by smact can be featurised using the matminer
Python library (Ward et al., 2018) or converted to objects used in Pymatgen.
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