
ACHR.cu: GPU-accelerated sampling of metabolic
networks
Marouen Ben Guebila1

1 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette,
Luxembourg.

DOI: 10.21105/joss.01363

Software
• Review
• Repository
• Archive

Editor: Lorena Pantano
Reviewers:

• @wmegchel
• @prasunanand

Submitted: 05 March 2019
Published: 28 May 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Introduction

The in silico modeling of biological organisms consists of the mathematical representation of
key functions of a biological system and the study of its behavior in different conditions and
environments. It serves as a tool to support wet lab experiments and to generate hypotheses
about the functioning of the subsystems. Among the many biological products, metabolism
is the most amenable to modeling because it is directly related to key biological functions
and processes. Moreover, public data resources of several metabolites and their abundances
have been developing rapidly in recent years thereby enabling applications in many areas.
In biotechnology, the metabolic modeling of ethanol-producing bacteria allows finding key
interventions, such as substrate optimization, that would increase the yield in the bioreactor
and improve its efficiency (Mahadevan, Burgard, Famili, Dien, & Schilling, 2005).
Recently, high-throughput technologies allowed to generate a large amount of biological data
that enabled complex modeling of biological systems. As models expand in size, the tools
used for their analysis have to be appropriately scaled to include the use of parallel software.
A tool of choice for the analysis of metabolic models is the sampling of the space of their pos-
sible phenotypes. Instead of considering one specific biological function of interest, sampling
is an unbiased tool for metabolic modeling that explores all the space of possible metabolic
phenotypes. For large models, sampling becomes expensive both in time and computational
resources. To make sampling accessible in the modeler’s toolbox, we present ACHR.cu which
is a fast Graphical Processing Unit (GPU) implementation of the sampling algorithm Artifi-
cial Centering Hit-and-Run (ACHR) (Kaufman & Smith, 1998) using the parallel computing
platform CUDA (Nickolls, Buck, & Garland, 2008).

Results

Metabolic models are networks of m metabolites involved in n reactions. Briefly, they are for-
mulated as linear programs (O’Brien, Monk, & Palsson, 2015) using the stoichiometric matrix
S(m,n). A central hypothesis in metabolic modeling is the steady-state assumption, meaning
that generating fluxes are equal to degrading fluxes and the rate of change of metabolite
concentrations is null. Mathematically, the steady-state assumption translates to constraining
the solution space to the null space of the stoichiometric matrix S(m,n).
The solution to the linear program allows finding flux values in the network that achieve the
objective function of interest. Particularly, ACHR allows obtaining a distribution of possible
fluxes for each reaction.
The sampling of the solution space of metabolic models is a two-step process:

Guebila, (2019). ACHR.cu: GPU-accelerated sampling of metabolic networks. Journal of Open Source Software, 4(37), 1363. https://doi.org/
10.21105/joss.01363

1

https://doi.org/10.21105/joss.01363
https://github.com/openjournals/joss-reviews/issues/1363
https://github.com/marouenbg/ACHR.cu
https://doi.org/10.5281/zenodo.3233085
https://lpantano.github.io/
https://github.com/wmegchel
https://github.com/prasunanand
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01363
https://doi.org/10.21105/joss.01363


Generation of warmup points

The first step of sampling the solution space of metabolic models involves the generation of
warmup points that are solutions to the metabolic model’s linear program. The sampling
chain starts from those solutions to explore the solution space.
The generation of p ≥ 2n warmup points corresponds to flux variability analysis (FVA) (Ma-
hadevan & Schilling, 2003) solutions for the first 2n points, with n the number of reactions
in the network and the objective function is to minimize and maximize each reaction in the
model (hence 2n). For the remaining p − 2n points, they correspond to solutions generated
using a random objective vector c(n,1) in the linear program.
The generation of warmup points is a time-consuming process and requires the use of more
than one core in parallel. The distribution of the points to generate among the nc cores of
the computer is often performed through static balancing with each core getting p/nc points
to generate. Nevertheless, the formulation of the problem induces a significant imbalance in
the distribution of work, meaning that the workers will not converge at the same time thereby
slowing down the overall process. We showed previously that FVA is imbalanced, especially
with metabolism-expression models (Guebila, 2018). The generation of warmup points through
random c vectors of objective coefficients is yet another factor to favor ill-conditioned problems
and the imbalance between the parallel workers.
To address the imbalance between the workers, dynamic loading balancing as implemented
through the OpenMP parallel library in C (Dagum & Menon, 1998) allows assigning fewer
points to workers that required more time to solve previous chunks of reactions. In the end,
the workers converge at the same time.
Given this background, the generation of 30,000 warmup points using an OpenMP dynamically
load balanced implementation (CreateWarmupVF) (Guebila, 2018) and the MATLAB version
(CreateWarmupMATLAB) were compared on three metabolic models, i.e., E. coli core (Orth,
Palsson, & Fleming, 2010), P. putida (Nogales, Palsson, & Thiele, 2008), and Recon2 (Thiele
et al., 2013). The speedup achieved by CreateWarmupVF over CreateWarmupMATLAB was
substantial (up to 50 fold) (Guebila, 2018) and showed the power of dynamic load balancing
in ill-conditioned parallel problems. Using the generated warmup points, the uniform sampling
process can start to explore the solution space.

Sampling of the solution space

Second, the sampling of the solution space of metabolic models involves the generation of
sampling chains starting from the warmup points. The sampling in MATLAB was performed
using the ACHR serial function using one sampling chain, and each point was saved after 1000
steps. The GPU parallel version (ACHR.cu) creates one chain for each point executed by one
thread in the GPU. Moreover, each thread can call additional threads to perform large matrix
operations using the grid nesting and dynamic parallelism capabilities of the new NVIDIA
cards (sm_35 and higher). When compared to the CPU, the speedup with the GPU is quite
important as reported in table 1. It is noteworthy that even for a single core, the CPU is
multithreaded especially with optimized MATLAB base functions such as min and max, and
that despite a large number of cores in the GPU, they are slow (0.7 GHz) in comparison to
CPU (3.5 GHz).

Model m/n Points Steps per point Intel Xeon (3.5 GHz) Tesla K40
E. coli core 72/95 1000 1000 42 2 (SVD)
E. coli core 72/95 5000 1000 208 12 (SVD)
E. coli core 72/95 10000 1000 420 24 (SVD)
P. putida 911/1060 1000 1000 103 17 (SVD)

Guebila, (2019). ACHR.cu: GPU-accelerated sampling of metabolic networks. Journal of Open Source Software, 4(37), 1363. https://doi.org/
10.21105/joss.01363

2

https://doi.org/10.21105/joss.01363
https://doi.org/10.21105/joss.01363


Model m/n Points Steps per point Intel Xeon (3.5 GHz) Tesla K40
P. putida 911/1060 5000 1000 516 70 (SVD)
P. putida 911/1060 10000 1000 1081 138 (SVD)
Recon2 4036/7324 1000 1000 2815 269 (QR)
Recon2 4036/7324 5000 1000 14014 1110 (QR)
Recon2 4036/7324 10000 1000 28026 2240 (QR)

Table 1: Runtimes in seconds of ACHR in MATLAB and ACHR.cu for a set of metabolic
models starting from 30,000 warmup points. SVD and QR refer to the implementation of
the null space computation, m and n respectively refer to the number of metabolites and
reactions in the model.
The implementation of null space computation to constrain the metabolic model was a sig-
nificant determinant in the final runtime, and the fastest implementation was reported (Table
1). Particularly, there was a tradeoff between memory usage and access, and the computation
time when either QR or Singular Value Decomposition (SVD) was used.
While computing the SVD of the S matrix is generally more precise than QR, it is not prone
to parallel computation in the GPU which can be even slower than the CPU in some cases.
However, computing the null space through QR decomposition is faster but less precise and
consumes more memory as it takes all the dimensions of the matrix in contrast to SVD that
removes columns below a given precision of the singular values.
Finally, ACHR.cu was developed as a high-performance tool for the modeling of metabolic
networks using a parallel architecture that segregates the generation of warmup points and
the sampling.

Comparison to existing software

Conceptually, the architecture of the parallel GPU implementation of ACHR.cu is similar to the
MATLAB Cobra Toolbox (Heirendt et al., 2019) GpSampler. Another tool, OptGpSampler
(Megchelenbrink, Huynen, & Marchiori, 2014) provides up to 40 fold speedup over GpSampler
through a i) C implementation and ii) fewer but longer sampling chains launch. Since OptG-
pSampler performs the generation of the warmup points and the sampling in one process, it
is clear from the results of the current work that the speedup achieved with the generation
of warmup points is more significant than sampling itself. We decoupled the generation of
warmup points from sampling to take advantage of dynamic load balancing with OpenMP.
Additionally, in OptGpSampler each worker gets the same amount of points and steps to
compute; the problem is statically load balanced by design. In contrast, when the generation
of warmup points is performed separately from sampling, the problem can be dynamically
balanced and the parallel workers are ensured to converge simultaneously.
Finally, future improvements of this work can consider an MPI/CUDA hybrid to take advan-
tage of the multi-GPU architecture of recent NVIDIA cards like the K80. Additionally, the
integration of LP solvers on the GPU (Charlton, Maddock, & Richmond, 2019; Gurung & Ray,
2019; Li, Lv, Hu, & Jiang, 2011) can help the development of end-to-end sampling solutions.
Taken together, the parallel architecture of ACHR.cu allows faster sampling of metabolic mod-
els over existing tools thereby enabling the unbiased analyses of large-scale systems biology
models.

Guebila, (2019). ACHR.cu: GPU-accelerated sampling of metabolic networks. Journal of Open Source Software, 4(37), 1363. https://doi.org/
10.21105/joss.01363

3

https://doi.org/10.21105/joss.01363
https://doi.org/10.21105/joss.01363


Acknowledgments

The experiments presented in this paper were carried out using the HPC facilities of the
University of Luxembourg (Varrette, Bouvry, Cartiaux, & Georgatos, 2014) – see https://hpc.
uni.lu. The author acknowledges the support of the Fonds National de la Recherche’s National
Centre of Excellence in Research on Parkinson’s disease (FNR-NCER-PD).

References

Charlton, J., Maddock, S., & Richmond, P. (2019). Two-dimensional batch linear program-
ming on the GPU. Journal of Parallel and Distributed Computing, 126, 152–160. doi:10.1016/
j.jpdc.2019.01.001
Dagum, L., & Menon, R. (1998). OpenMP: An industry-standard API for shared-memory
programming. Computing in Science & Engineering, (1), 46–55. doi:10.1109/99.660313
Guebila, M. B. (2018). Dynamic load balancing enables large-scale flux variability analysis.
bioRxiv, 440701. doi:10.1101/440701
Gurung, A., & Ray, R. (2019). Simultaneous solving of batched linear programs on a GPU. In
Proceedings of the 2019 acm/spec international conference on performance engineering (pp.
59–66). ACM. doi:10.1145/3297663.3310308
Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir,
H. S., et al. (2019). Creation and analysis of biochemical constraint-based models using the
COBRA toolbox v. 3.0. Nature protocols, 1. doi:10.1038/s41596-018-0098-2
Kaufman, D. E., & Smith, R. L. (1998). Direction choice for accelerated convergence in
hit-and-run sampling. Operations Research, 46(1), 84–95. doi:10.1287/opre.46.1.84
Li, J., Lv, R., Hu, X., & Jiang, Z. (2011). A GPU-based parallel algorithm for large scale
linear programming problem. In Intelligent decision technologies (pp. 37–46). Springer.
doi:10.1007/978-3-642-22194-1_4
Mahadevan, R., Burgard, A. P., Famili, I., Dien, S. V., & Schilling, C. H. (2005). Applications
of metabolic modeling to drive bioprocess development for the production of value-added chem-
icals. Biotechnology and Bioprocess Engineering, 10(5), 408–417. doi:10.1007/bf02989823
Mahadevan, R., & Schilling, C. (2003). The effects of alternate optimal solutions in constraint-
based genome-scale metabolic models. Metabolic engineering, 5(4), 264–276. doi:10.1016/j.
ymben.2003.09.002
Megchelenbrink, W., Huynen, M., & Marchiori, E. (2014). optGpSampler: An improved tool
for uniformly sampling the solution-space of genome-scale metabolic networks. PloS one, 9(2),
e86587. doi:10.1371/journal.pone.0086587
Nickolls, J., Buck, I., & Garland, M. (2008). Scalable parallel programming. In 2008 ieee hot
chips 20 symposium (hcs) (pp. 40–53). IEEE. doi:10.1145/1365490.1365500
Nogales, J., Palsson, B. Ø., & Thiele, I. (2008). A genome-scale metabolic reconstruction
of pseudomonas putida KT2440: iJN746 as a cell factory. BMC Systems Biology, 2(1), 79.
doi:10.1186/1752-0509-2-79
O’Brien, E. J., Monk, J. M., & Palsson, B. O. (2015). Using genome-scale models to predict
biological capabilities. Cell, 161(5), 971–987. doi:10.1016/j.cell.2015.05.019
Orth, J. D., Palsson, B. Ø., & Fleming, R. M. T. (2010). Reconstruction and use of micro-
bial metabolic networks: The core Escherichia coli metabolic model as an educational guide.
EcoSal Plus, 4(1). doi:10.1128/ecosalplus.10.2.1

Guebila, (2019). ACHR.cu: GPU-accelerated sampling of metabolic networks. Journal of Open Source Software, 4(37), 1363. https://doi.org/
10.21105/joss.01363

4

https://hpc.uni.lu
https://hpc.uni.lu
https://doi.org/10.1016/j.jpdc.2019.01.001
https://doi.org/10.1016/j.jpdc.2019.01.001
https://doi.org/10.1109/99.660313
https://doi.org/10.1101/440701
https://doi.org/10.1145/3297663.3310308
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1287/opre.46.1.84
https://doi.org/10.1007/978-3-642-22194-1_4
https://doi.org/10.1007/bf02989823
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1371/journal.pone.0086587
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1186/1752-0509-2-79
https://doi.org/10.1016/j.cell.2015.05.019
https://doi.org/10.1128/ecosalplus.10.2.1
https://doi.org/10.21105/joss.01363
https://doi.org/10.21105/joss.01363


Thiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K., Haralds-
dottir, H., et al. (2013). A community-driven global reconstruction of human metabolism.
Nature Biotechnology, 31(5), 419–425. doi:10.1038/nbt.2488
Varrette, S., Bouvry, P., Cartiaux, H., & Georgatos, F. (2014). Management of an academic
HPC cluster: The UL experience. In Proc. Of the 2014 intl. Conf. On high performance
computing & simulation (hpcs 2014) (pp. 959–967). Bologna, Italy: IEEE. doi:10.1109/
hpcsim.2014.6903792

Guebila, (2019). ACHR.cu: GPU-accelerated sampling of metabolic networks. Journal of Open Source Software, 4(37), 1363. https://doi.org/
10.21105/joss.01363

5

https://doi.org/10.1038/nbt.2488
https://doi.org/10.1109/hpcsim.2014.6903792
https://doi.org/10.1109/hpcsim.2014.6903792
https://doi.org/10.21105/joss.01363
https://doi.org/10.21105/joss.01363

	Introduction
	Results
	Generation of warmup points
	Sampling of the solution space

	Comparison to existing software
	Acknowledgments
	References

