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Summary

AMReX is a C++ software framework that supports the development of block-structured
adaptive mesh refinement (AMR) algorithms for solving systems of partial differential
equations (PDEs) with complex boundary conditions on current and emerging architec-
tures.
Block-structured AMR discretization provides the basis for the temporal and spatial strat-
egy for a large number of applications; see, e.g., (A. S. Almgren, Bell, Colella, Howell,
& Welcome, 1998; J. Bell, Berger, Saltzman, & Welcome, 1994; M. J. Berger & Colella,
1989; M. J. Berger & Oliger, 1984; Pember et al., 1998) for some of the earliest block-
structured AMR work. There are also a number of block-structured and octree AMR
software frameworks publicly available; see (“AMR Resources Web page,” n.d.) for links
to many of them.
AMR reduces the computational cost and memory footprint compared to a uniform mesh
while preserving the local descriptions of different physical processes in complex multi-
physics algorithms. Current AMReX-based application codes span a number of areas,
including atmospheric modeling, astrophysics, combustion, cosmology, fluctuating hydro-
dynamics, multiphase flows, and particle accelerators. In particular, the AMReX-Astro
GitHub repository holds a number of astrophysical modeling tools based on AMReX (Zin-
gale et al., 2018). The origins of AMReX trace back to the BoxLib (W. Zhang et al.,
2016) software framework.
AMReX supports a number of different time-stepping strategies and spatial discretiza-
tions. Solution strategies supported by AMReX range from level-by-level approaches
(with or without subcycling in time) with multilevel synchronization to full-hierarchy ap-
proaches, and any combination thereof. User-defined kernels that operate on patches of
data can be written in C++ or Fortran; there is also a Fortran-interface functionality
which wraps the core C++ data structures and operations in Fortran wrappers so that
an application code based on AMReX can be written entirely in Fortran.
AMReX developers believe that interoperability is an important feature of sustainable
software. AMReX has examples of interfaces to other popular software packages such as
SUNDIALS (Hindmarsh et al., 2005), PETSc (Balay et al., 2019) and hypre (Balay et
al., 2019), and is part of the 2018 xSDK (“xSDK Version 0.4.0 Web page,” n.d.) software
release thus installable with Spack.
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Mesh and Particle Data

AMReX supplies data containers and iterators for mesh-based fields and particle data.
The mesh-based data can be defined on cell centers, cell faces, or cell corners (nodes).
Coordinate systems include 1D Cartesian or spherical; 2D Cartesian or cylindrical (r-z);
and 3D Cartesian.

AMReX provides data structures and iterators for performing data-parallel particle simu-
lations. The approach is particularly suited to particles that interact with data defined on
a (possibly adaptive) block-structured hierarchy of meshes. Example applications include
those that use Particle-in-Cell (PIC) methods, Lagrangian tracers, or solid particles that
exchange momentum with the surrounding fluid through drag forces. AMReX’s particle
implementation allows users flexibility in specifying how the particle data is laid out in
memory and in choosing how to optimize parallel communication of particle data.

Complex Geometries

AMReX provides support for discretizing complex geometries using the cut cell / em-
bedded boundary approach. This requires additional data structures for holding face
apertures and normals as well as volume fractions. Support for operations on the mesh
hierarchy including cut cells is enabled through the use of specialized discretizations at
and near cut cells, and masks to ensure that only values in the valid domain are computed.
Examples are provided in the tutorials.

Parallelism

AMReX’s GPU strategy focuses on providing performant GPU support with minimal
changes to AMReX-based application codes and maximum flexibility. This allows appli-
cation teams to get running on GPUs quickly while allowing long term performance tuning
and programming model selection. AMReX currently uses CUDA for GPUs, but appli-
cation teams can use CUDA, CUDA Fortran, OpenACC, or OpenMP in their individual
codes. AMReX will support non-CUDA strategies as appropriate.

When running on CPUs, AMReX uses an MPI+X strategy where the X threads are used
to perform parallelization techniques like tiling. The most common X as of this writing is
OpenMP but AMReX is rapidly evolving to work effectively on GPUs. On GPUs, AM-
ReX requires CUDA and can be further combined with other parallel GPU languages,
including OpenACC and OpenMP, to control the offloading of subroutines to the GPU.
This MPI+CUDA+X GPU strategy has been developed to give users the maximum flex-
ibility to find the best combination of portability, readability and performance for their
applications.

Asynchronous Iterators and Fork-Join Support

AMReX includes a runtime system that can execute asynchronous AMReX-based applica-
tions efficiently on large-scale systems. The runtime system constructs a task dependency
graph for the whole coarse time step and executes it asynchronously to the completion
of the step. There is also support for more user-specific algorithms such as asynchronous
filling of ghost cells across multiple ranks, including interpolation of data in space and
time.

In addition, AMReX has support for fork-join functionality. During a run of an AMReX-
based application, the user can divide the MPI ranks into subgroups (i.e., fork) and
assign each subgroup an independent task to compute in parallel with each other. After
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all of the forked child tasks complete, they synchronize (i.e., join), and the parent task
continues execution as before. The fork-join operation can also be invoked in a nested
fashion, creating a hierarchy of fork-join operations, where each fork further subdivides
the ranks of a task into child tasks. This approach enables heterogeneous computation
and reduces the strong scaling penalty for operations with less inherent parallelism or
with large communication overheads.

Linear Solvers

AMReX includes native linear solvers for parabolic and elliptic equations. Solution proce-
dures include geometric multigrid (Briggs, Henson, & McCormick, 2000) and BiCGStab
iterative solvers; interfaces to external hypre and PETSc solvers are also provided. The
linear solvers operate on regular mesh data as well as data with cut cells.

I/O and Post-processing

AMReX has native I/O for checkpointing and for reading and writing plotfiles for post-
processing analysis or visualization. AMReX also supplies interfaces to HDF5. The
AMReX plotfile format is supported by VisIt (Childs et al., 2012), Paraview (Ahrens,
Geveci, & Law, 2005), and yt (Turk et al., 2011). AMReX also has linkages to external
routines through both Conduit (“Conduit Web page,” n.d.) and SENSEI (“SENSEI Web
page,” n.d.).

Documentation, Tutorials and Profiling Tools

Extensive documentation of core AMReX functionality is available online, and many of
the application codes based on AMReX are publicly available as well. Smaller examples of
using AMReX for building application codes are provided in the AMReX Tutorials section.
Examples include a Particle-in-Cell (PIC) code, a compressible Navier–Stokes solver in
complex geometry, advection-diffusion solvers, support for spectral deferred corrections
time-stepping, and much more.

AMReX-based application codes can be instrumented using AMReX-specific performance
profiling tools that take into account the hierarchical nature of the mesh in most AMReX-
based applications. These codes can be instrumented for varying levels of profiling detail.
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