
RAFF.jl: Robust Algebraic Fitting Function in Julia
Emerson V. Castelani1, Ronaldo Lopes1, Wesley V. I. Shirabayashi1,
and Francisco N. C. Sobral1

1 Department of Mathematics, State University of Maringá, Paraná, Brazil
DOI: 10.21105/joss.01385

Software
• Review
• Repository
• Archive

Submitted: 12 March 2019
Published: 02 July 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

RAFF.jl is a Julia package for the adjustment of a function to a dataset coming from some
experiment. This package is an alternative to classical adjustment techniques such as linear
and nonlinear regression. The goal of this package is to find robust adjustments free from the
influence of possible outliers (discrepant points of the adjustment).

Motivation

Let f : Rn → R be a function whose mathematical description is not available. This function
can be, for example, a black-box, a proprietary computer program or an experiment. Suppose
that a dataset S = {(x1, y1), . . . , (xm, ym)} is available, where yi is an approximation of f(xi)
(from an experimental procedure, numerical approximation, etc.) and we want to approximate
f by a known model ϕ. Model ϕ can be defined as ϕ(x, θ), where x are the n independent
variables of f and θ represents some parameters of ϕ. RAFF.jl (Robust Algebraic Fitting
Function) is a Julia package developed to find parameters θ for ϕ in order to adjust it to
the observed values S of the unknown function f . Following Liu & Wang (2008) and Keleş
(2018), in general, the adjustment can be related to

1. Classical least squares (algebraic fit): which considers the sum of deviations of type
|ϕ(xi, θ)− yi|2, also known as regression;

2. Orthogonal least squares (geometric fit): which considers the sum of deviations of type
minx ∥(x, ϕ(x, θ))− (xi, yi)∥2 (orthogonal projection on the curve to be adjusted).

RAFF.jl was developed to solve a generalization of the first case.
Linear and nonlinear regression is essentially the adjustment of mathematical functions to data
and is a problem that appears in many areas of science. When data comes from real experi-
ments, non-expected errors may cause the appearance of outliers, which might be responsible
for causing the regression calculated by sum of deviations to result in misleading approxima-
tions. Regression is strongly connected to Statistics but practical methods to detect outliers
are not very common. Motulsky & Brown (2006), for example, develop a method for outlier
detection based on the assumption that the error follows a Lorentzian distribution around the
function and use nonlinear regression based on least squares. RAFF.jl provides automatic
detection of outliers using a voting system. It is an optimization-based package, based on
algorithms for Lower Order-Value Optimization (LOVO) which were introduced by Andreani,
Dunder, & Martı́nez (2005) and revisited by Andreani, Martı́nez, Martı́nez, & Yano (2009).
Recently, Martı́nez (2012) performed a complete review about LOVO problems considering
theoretical aspects of algorithms to solve it and potential applications.

Castelani et al., (2019). RAFF.jl: Robust Algebraic Fitting Function in Julia. Journal of Open Source Software, 4(39), 1385. https://doi.org/
10.21105/joss.01385

1

https://doi.org/10.21105/joss.01385
https://github.com/openjournals/joss-reviews/issues/1385
https://github.com/fsobral/RAFF.jl
https://doi.org/10.5281/zenodo.3265300
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01385
https://doi.org/10.21105/joss.01385

Background

To elucidate the essence of how RAFF.jl works, let us detail some aspects related to the
LOVO problem and its resolution. Let us consider m functions Fi : Rn → R, i = 1, ...,m.
Given θ ∈ Rn, we can sort the set {Fi(θ), i = 1, ...,m} in ascending order:

Fi1(θ)(θ) ≤ Fi2(θ)(θ) ≤ ... ≤ Fim(θ)(θ).

Considering a value 1 ≤ p ≤ m, we can define the LOVO function as

Sp(θ) =

p∑
k=1

Fik(θ)(θ)

and the LOVO problem as
min
θ∈Rn

Sp(θ).

Assuming that Fi, i = 1, ...,m are continuous functions we have that Sp is a continuous
function, but assuming that Fi’s are differentiable functions we cannot conclude that Sp is
differentiable. This can be seen by reformulating the LOVO problem as follows. Denoting
C = {C1, ..., Cr} as the set of all combinations of {1, ...,m} taken p at time, we can define
for each i ∈ {1, ..., r} the following function

fi(θ) =
∑
k∈Ci

Fk(θ)

and
fmin(θ) = min{f1(θ), ..., fr(θ)}.

It can be observed that, for a given θ, fmin(θ) is obtained by a combination Cj which contains
the smallest sum of p elements of the set {Fi(θ), i = 1, ...,m}. Therefore fmin(θ) = Sp(θ)
and, consequently, the LOVO function is non differentiable. The LOVO problem description
can become more clear by considering an example. In this sense, let us consider the dataset
given by

x y

-0.5 0.119447
0.0 0.3
0.5 0.203551
0.75 0.423998

and the model defined by ϕ(x, θ) = θ(sin(x) + cos(x)). Naturally, we have m = 4 and let
us consider p = 3. The Fi’s can assume diferent forms. To leave the example closest to our
approach, let’s consider Fi’s as:

F1(θ) = (0.119447− ϕ(−0.5, θ))2,

F2(θ) = (0.3− ϕ(0.0, θ))2,

F3(θ) = (0.203551− ϕ(0.5, θ))2,

F4(θ) = (0.423998− ϕ(−0.75, θ))2.

Since m = 4 and p = 3, we have 4 possible subsets with 3 elements each from set {1, 2, 3, 4}:

C1 = {1, 2, 3}, C2 = {1, 2, 4}, C3 = {1, 3, 4} and C4 = {2, 3, 4}.

Castelani et al., (2019). RAFF.jl: Robust Algebraic Fitting Function in Julia. Journal of Open Source Software, 4(39), 1385. https://doi.org/
10.21105/joss.01385

2

https://doi.org/10.21105/joss.01385
https://doi.org/10.21105/joss.01385

Figure 1: The red function represents the LOVO function. Observing the interval [0.2, 0.25] we can
note a singular point even considering f1, f2, f3 and f4 as differentiable functions.

Thus, associated to each Ci, i = 1, ..., 4, we can define function fi as follows

f1(θ) = F1(θ) + F2(θ) + F3(θ),

f2(θ) = F1(θ) + F2(θ) + F4(θ),

f3(θ) = F1(θ) + F3(θ) + F4(θ),

f4(θ) = F2(θ) + F3(θ) + F4(θ),

and consequently,

fmin(θ) = min{f1(θ), f2(θ), f3(θ), f4(θ)} = S3(θ).

As previously pointed out, this function is continuous but it is not differentiable as illustrated
in Figure 2.
Andreani et al. (2009) introduced line search methods and handled the possible singularities
in a clever way, using the following approximation for ∇fmin(θ)

∇fmin(θ) = ∇fi(θ),

where i ∈ I(θ) = {k ∈ {1, ..., r}; fk(θ) = fmin(θ)}. This approach can naturally be extended
for second order derivatives.
An important point for practical purposes is when we consider the LOVO problem with p = m
and Fi(θ) = (ϕ(xi, θ) − yi)

2. In this case, the LOVO problem coincides with classical least
squares and, consequently, it can be seen as a generalization of the least squares problem.
When p < m and Fi(θ) = (ϕ(xi, θ)− yi)

2, the solution θ provides a model ϕ(x, θ) free from
influence of the m − p points with the highest deviation. The number p can be interpreted
as the number of trusted points, that is, m− p possible outliers were identified.

Castelani et al., (2019). RAFF.jl: Robust Algebraic Fitting Function in Julia. Journal of Open Source Software, 4(39), 1385. https://doi.org/
10.21105/joss.01385

3

https://doi.org/10.21105/joss.01385
https://doi.org/10.21105/joss.01385

One of the most usual ways to solve the problem of nonlinear least squares is by using the
Levenberg-Marquardt method (Moré, 1978). This method is a first-order method, where
derivatives of the model ϕ with respect to θ are used to compute the gradient of the objective
function in the associated least squares problem. The reason for the wide use of Levenberg-
Marquardt method is, in general, associated with quadratic convergence properties even using
only first-order derivatives. In this direction, it is relevant to ask about Levenberg-Marquardt-
based methods to solve LOVO problems in the context of adjustment functions.
RAFF.jl implements a Levenberg-Marquardt algorithm in the context of LOVO problems, i.e.,
it solves the problem of minimizing fmin(θ), where Fi(θ) = (ϕ(xi, θ)− yi)

2, for i = 1, . . . ,m.
In this sense, first-order derivatives are necessary and the same strategy of Andreani et al.
(2009) is used. It uses first-order derivatives of the model ϕ with respect to θ to approximate
the gradient of fmin(θ), which is a non differentiable function. Moreover, LOVO problems
have the limitation that the number p of possible trusted points needs to be given by the
user. RAFF.jl solves this limitation by implementing a voting system. In this voting system,
several LOVO subproblems are solved with different values for p, the number of possible
trusted points. Each solution of a LOVO subproblem is associated to a vector parameter θ.
The vector parameters are compared against each other using the Euclidean distance, where
small distances (using a threshold) are considered the same solution. The parameter θ∗ which
most occurs among them is declared as the solution.

Functionality

RAFF.jl main methods expect as input a dataset of the observed data and a model function,
whose parameters one intends to adjust. The model function is a regular Julia function with
2 arguments: θ represents the parameters of the model and x represents the arguments of
function f . The following function is an example of a model representing the logistic function

ϕ(x, θ) = θ1 +
θ2

1.0 + exp(−θ3x+ θ4)
.

The observed data can be represented by the following table:

x y

0.0000 1166.0892
3.3333 1384.4495
6.6666 4054.1959
10.0000 2692.4928
13.3333 3011.5096
16.6666 3882.4381
20.0000 4612.4603
23.3333 6605.6544
26.6666 5880.1774
30.0000 5506.3050

In this example, the true function was given by

f(x) = 1000 +
5000

1.0 + exp(−0.2x+ 3)
.

The observed data was generated as random normal perturbations around the graphic of f
and is shown in Figure 1. The dots and triangles represent the observed data, where the red
triangles were manually set to be the outliers. Using the least squares technique with the

Castelani et al., (2019). RAFF.jl: Robust Algebraic Fitting Function in Julia. Journal of Open Source Software, 4(39), 1385. https://doi.org/
10.21105/joss.01385

4

https://doi.org/10.21105/joss.01385
https://doi.org/10.21105/joss.01385

Figure 2: Points representing the logistic function. The red triangles are two outliers that should be
ignored. The blue dashed function is the true one, while the green was obtained by traditional least
squares techniques and the red one was obtained by RAFF.jl.

model above, the green function is found. When RAFF.jl is applied to the same problem, it
correctly identifies the two outliers. The resulting function is depicted as the red one, very
close to f .

Additional features

The user may also provide more information to RAFF.jl, such as an rough approximation
to the expected number of trusted observations. Additional methods and options are also
available to more advanced users, such as generation of random test data and multistart
strategies. First-order derivatives of the model ϕ with respect to θ can also be provided,
which results in a faster executing time. When they are not provided by the user, RAFF.jl
uses Julia’s ForwardDiff.jl package (Revels, Lubin, & Papamarkou, 2016).
RAFF.jl can be run in serial, parallel and distributed environments. Parallel and distributed
methods use the native Distributed.jl package. The distributed version is a primary-worker
implementation that does not use shared arrays, therefore, can be run both locally or on a
cluster of computers.
This package is intended to be used by any experimental researcher with a little knowledge
about mathematical modeling and fitting functions.

Castelani et al., (2019). RAFF.jl: Robust Algebraic Fitting Function in Julia. Journal of Open Source Software, 4(39), 1385. https://doi.org/
10.21105/joss.01385

5

https://docs.julialang.org/en/v1.0/stdlib/Distributed/
https://doi.org/10.21105/joss.01385
https://doi.org/10.21105/joss.01385

Installation and usage

RAFF.jl is an open-source software that can be downloaded from Github. It is a registered
package and can be directly installed from Julia’s package repository. The whole description
for first time usage or its API is available at its documentation.

Acknowledgments

This project was supported by Fundação Araucária under grant 002/17.

References

Andreani, R., Dunder, C., & Martı́nez, J. M. (2005). Nonlinear-Programming Reformulation
of the Order-Value Optimization Problem. Mathematical Methods of Operations Research,
61(3), 365–384. doi:10.1007/s001860400410
Andreani, R., Martı́nez, J. M., Martı́nez, L., & Yano, F. S. (2009). Low Order-Value Op-
timization and Applications. Journal of Global Optimization, 43(1), 1–22. doi:10.1007/
s10898-008-9280-3
Keleş, T. (2018). Comparison of Classical Least Squares and Orthogonal Regression in Mea-
surement Error Models. International Online Journal of Educational Sciences, 10(3), 200–214.
doi:10.15345/iojes.2018.03.013
Liu, Y., & Wang, W. (2008). A Revisit to Least Squares Orthogonal Distance Fitting of
Parametric Curves and Surfaces. In F. Chen & B. Jüttler (Eds.), Advances in geometric
modeling and processing (pp. 384–397). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi:10.1007/978-3-540-79246-8_29
Martı́nez, J. M. (2012). Generalized order-value optimization. Top, 20(1), 75–98. doi:10.
1007/s11750-010-0169-1
Moré, J. (1978). The Levenberg-Marquardt Algorithm: Implementation and Theory. Numer-
ical Analysis, 105–116. doi:10.1007/BFb0067700
Motulsky, H. J., & Brown, E. R. (2006). Detecting Outliers When Fitting Data with Nonlinear
Regression – a New Method Based on Robust Nonlinear Regression and the False Discovery
Rate. BMC Bioinformatics, 7(123). doi:10.1186/1471-2105-7-123
Revels, J., Lubin, M., & Papamarkou, T. (2016). Forward-mode automatic differentiation in
Julia. arXiv:1607.07892 [cs.MS].

Castelani et al., (2019). RAFF.jl: Robust Algebraic Fitting Function in Julia. Journal of Open Source Software, 4(39), 1385. https://doi.org/
10.21105/joss.01385

6

https://github.com/fsobral/RAFF.jl
https://fsobral.github.io/RAFF.jl/stable/
https://doi.org/10.1007/s001860400410
https://doi.org/10.1007/s10898-008-9280-3
https://doi.org/10.1007/s10898-008-9280-3
https://doi.org/10.15345/iojes.2018.03.013
https://doi.org/10.1007/978-3-540-79246-8_29
https://doi.org/10.1007/s11750-010-0169-1
https://doi.org/10.1007/s11750-010-0169-1
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1186/1471-2105-7-123
https://arxiv.org/abs/1607.07892
https://doi.org/10.21105/joss.01385
https://doi.org/10.21105/joss.01385

	Summary
	Motivation
	Background
	Functionality
	Additional features
	Installation and usage
	Acknowledgments
	References

